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Abstract 

This thesis project documents my recent work in the research 
and development of an arsenal of creative audio tools, covering 
VST and max for live plugins, physical MIDI interfaces, and 
microphones. The project will discuss both the technical 
specifications of each device and the conceptual basis of 
developing an artistic practice that is engaged with the process 
of building its own tools.



￼4

Section 1 
  

Max for Live Projects 

This following section covers a selection of the various Max for 
Live audio tools I have created and released over my time at 
Calarts. They include modulation devices, experimental audio 
processing tools, visualizers, and sound generators. Globally I 
have sold over 7000 of these units in 94 different countries 
using an open source pay what you want model. In terms of 
their research and development, many of these devices were  
created in response to a lack of similar options available in the 
audio production marketplace and to satisfy my own creative 
need for interesting audio tools within my sound practice. 
These devices and their demo videos are hosted online on 
Gumroad, where they can be downloaded with a pay what you 
want model: https://irisdevices.gumroad.com/   

https://irisdevices.gumroad.com/
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1.1  

MCLFO 

MCLFO is a Max for Live modulation device that utilizes the 
theory of the harmonic series to control the frequencies of a 9-
band, 9-oscillator sine wave multi-channel LFO. The values of 
each LFO can be mapped to separate parameters inside 
Ableton Live, and each mapping has variable range settings. 
The oscillator’s frequency ratios are synchronized to each other 
and can be adjusted with seven modes: Harmonic, 
Subharmonic, Exponential, Deviate, Decide, Increment, and 
Spread. The device has two primary adjustable parameters: 
frequency and multiplier. The frequency parameter sets the 
fundamental frequency that is used to generate the harmonic 
series across the LFOs, and the multiplier parameter modifies 
the ratio between successive oscillators.  

The core of the device is implemented with Max’s mc objects. 
An mc.sig~ receives a pak message comprised of a mode 
symbol and two floating-point parameters (which consist of the 
fundamental and multiplier values). These signals then drive an 
mc.cycle~ object that produces the ten-channel bank of phase-
coherent sine oscillators. The raw bipolar output of this 
oscillator bank in the range of −1 to 1 is converted to a unipolar 
modulation signal via mc.scale~ and then down-sampled to a 
numerical value using mc.snapshot~. The resulting ten floating 
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point values are routed with mc.route and visualized with a ten 
band multislider. These values are then mapped to the standard 
0–127 range for direct use as automation and MIDI-style control 
values. 

Each device mode applies a unique formula to determine the 
frequency of the oscillators and their relationships to each 
other. Harmonic mode creates a harmonic series across the 
LFOs with the following formula: 

￼  

where N is the multiplier and C represents the oscillator index. 
For example, in Harmonic mode a frequency input of 440 and a 
multiplier input of 1 would generate the following series: 440, 
880, 1320, 2640, etc, whereas a frequency input of 440 and a 
multiplier input of 0.5 would generate this series: 440, 660, 880, 
1100, etc. Subharmonic mode generates a subharmonic series 
using the following formula:  

￼  

For example, with a frequency input of 100 and a multiplier of 1, 
the device would output the following frequency values: 100, 
50, 25, 12.5, etc. Exponential mode creates an exponential 
harmonic series across the oscillators, governed by the 
following equation:  

￼  

Fc = F ⋅ (1 + N ⋅ C)

Fc = F ⋅ (1 − N ⋅ C)

Fc = F ⋅ e−N⋅C
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The Spread mode distributes the LFO frequencies linearly 
across a user-defined range, yielding evenly spaced rates 
between a minimum and maximum value. For example, in the 
Spread mode, if the device used 4 LFOs and had a frequency 
input of 10 and a multiplier input of 0, it would output LFO 
speeds of 0, 2.5, 5, and 7.5 hertz.  

Increment mode treats the multiplier as an additive step size, 
increasing the frequency value of each LFO by an increment 
specified by the multiplier parameter. For example, in 
Increment mode with a frequency of 10 and a multiplier of 10, 
the device would output 10, 20, 30, 40, 50, 60. This mode is 
governed by the equation: 

￼  

.The remaining modes—Deviate and Decide—offer other creative 
variations centered around randomness.  

The device enables a wide range of modulation patterns 
tailored to experimental and musical contexts. The frequency 
parameter can also be brought into negative hertz, which 
reverses the direction of the oscillation. This device expands the 
application of harmonic theory beyond sound synthesis by 
applying harmonic series principles to parameter automation in 
music production. By bridging these domains, it offers a novel 
approach to integrating natural acoustic processes and 
phenomena into sound design and modulation workflows.6  

Fc = F + N ⋅ C
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1.2 

Pitchblur 

Pitchblur is an Fast Fourier Transform based spectral multi-effect 
audio device. Its core DSP is built around a bank of per-bin 
processes running inside a series of pfft~ subpatches. Each 
subpatch operates on the complex spectrum of the input signal 
to provide spectral denoise, deharmonic, blur, gate, and pitch-
shift operations that can be combined to produce a myriad of 
interesting audio transmutations. 

The device uses a variable FFT size (from 16 up to 32768 
samples), allowing the user to move between high temporal 
resolution and high spectral resolution. Inside each pfft~, the 
incoming audio is analyzed via an fftin~ object, yielding the real 
and imaginary components for each frequency bin. These are 
converted to magnitude and phase using cartopol~,  and 
processed by the various effect stages. Then these phase and 
amplitude values are resynthesized with poltocar~ and fftout~. 
All control parameters (transposition, phase multiplication, 
noise reduction, harmonic reduction, gate amount, etc.) are 
passed into the FFT domain via dedicated in objects, making 
the spectral processing fully modulatable from the Max for Live 
interface. 
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The spectral blur section is driven by a phase multiplication 
control routed to the phase stream of each bin. This control 
scales the per-bin phase with *~ objects before resynthesis, 
effectively decorrelating the phase relationships between 
neighbouring bins. As the multiplier moves away from 1, inter-
bin phase relationships become increasingly unstable, 
producing a characteristic “smearing” or reverb-like diffusion. 
This blur is computed per FFT frame and is further shaped by 
the chosen FFT size, with larger windows yielding more 
pronounced spectral smear. 

The denoise and deharmonic behaviours are implemented as 
complementary amplitude-gating operations on the magnitude 
of each bin. A set of noise reduction and harmonic reduction 
controls modulate thresholds that feed a network of 
comparison objects ( >~ and <~). In the denoise configuration, 
bins whose magnitude exceeds a user-defined threshold are 
allowed to pass, suppressing low-level noise and room tone. In 
the deharmonic configuration, the inverse logic is applied: 
lower-amplitude, noise-like bins are preserved while stronger, 
more harmonic bins are attenuated, effectively inverting the 
typical denoiser and isolating inharmonic and noisy 
components of the spectrum. These gated magnitude streams 
are then recombined with their respective phase components 
and routed through selector~ objects and a crossfade system to 
control the relationship between dry and processed spectra. 

Pitch shifting is handled by phase-vocoder-style transposition 
using gizmo~. The transposition control is injected into the FFT 
processing via a dedicated inlet, and gizmo~ operates directly 
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on the complex spectrum to shift the perceived pitch without 
altering the overall duration. Additional phase-domain utilities 
such as phasewrap~ and framedelta~ are used to manage inter-
frame phase continuity, ensuring that even extreme 
transpositions and blur amounts remain relatively artifact-stable 
and musically usable. 

Pitchblur functions as a modular spectral laboratory: a single 
Max for Live device that exposes the inner workings of FFT 
analysis/resynthesis and allows denoising, deharmonization, 
spectral blurring, gating, and pitch shifting to be combined 
within one coherent interface. Conceptually, the project 
extends the classic phase vocoder into a performable, 
parameter-driven tool, translating the mathematics of the FFT 
and complex plane into an intuitive set of controls for sound 
design, diffusion, and experimental audio processing.4 
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1.3 

Euclidian Gate 

Euclidian Gate is a gate sequencer built on the Euclidean 
rhythm algorithm. Euclidean rhythms utilize mathematical 
functions to distribute a chosen number of events as evenly as 
possible across a fixed number of steps. This logic appeared in 
musical traditions across the world including clave patterns and 
Balkan rhythms long before it was mathematically described. In 
Euclidian Gate, this mathematical structure is utilized as a 
flexible rhythmic modulator that allows for the generation of 
evolving and complex gate sequencer patterns.  

The Subdivision parameter of the device defines how the 
Euclidean pattern aligns to musical time in Ableton. A 
subdivision value of 16 would generate 16th  notes, a 
subdivision value of 8 would generate 8th notes, and a 
subdivision value of 3 would generate ¼ note triplets for 
example. Changing the subdivision value effectively scales the 
temporal resolution of the output gate pattern. 

The Steps parameter determines the total number of steps or 
possible binary events within the Euclidean sequence. This 
corresponds to the length of one Euclidean cycle. 

The Events parameter defines the number of active triggers 
distributed across the sequence. Increasing or decreasing the 
number of events changes the density of the resulting pattern. 
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The Rotate parameter circularly shifts the pattern, allowing the 
user to offset the generated Euclidean rhythm.  

Each triggered step passes through a built-in ADSR envelope, 
allowing for dynamic control over the amplitude shape of each 
gated pulse. This transforms the sequencer from a purely binary 
trigger source into a dynamic rhythmic sculpting tool. 

Euclidian Gate also includes sixteen preset slots represented as 
small squares in the UI. Shift-clicking stores the current 
configuration and clicking recalls it. This enables performance-
ready switching between rhythmic structures. 

The device hopes to bring a mathematically elegant and 
globally rooted rhythmic principle into an intuitive Max for Live 
environment. By combining Euclidean distribution, envelope 
shaping, rotation, and preset recall, the device offers a fluid and 
expressive way to generate complex polyrhythmic modulation 
patterns for rhythmic gating inside Ableton Live.10 
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1.4 

Binseq 

Binseq is a Max for Live modulation device that generates 
rhythmic switching patterns using evolving binary sequences. 
Instead of relying on fixed step sequencing, Binseq converts 
user-specified base 10 integers into binary form and uses these 
bit patterns as modulation states. This approach makes it 
possible to explore a large and highly varied space of rhythmic 
and structural patterns using a single parameter. Because 
binary sequences naturally encode on/off states, they map 
intuitively onto rhythmic gates, switches, and parameter toggles 
within Ableton Live. 

The device accepts a user input value N in the range 0 ≤ N ≤ 
4096. Binseq then computes the binary representation of this 
number using an algorithm of bitwise intersection and 
bitshifting displayed on the left. This binary pattern is then 
looped continuously to form the modulation sequence. This 
allows for 4096 distinct rhythmic states using a single control. 

Advancing through the binary sequence is driven entirely by 
incoming MIDI notes. Each MIDI event increments the 
sequence index, allowing the user to inject highly precise 
timing, syncopation, and groove into the modulation. Because 
the rhythm comes from MIDI rather than an internal clock, 
Binseq can be tightly aligned to any performance or 
sequencing workflow. 
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Each bit in the binary sequence outputs a switching signal that 
can be mapped to any parameter inside Ableton Live. When a 
bit equals 1, the device outputs a high signal; when it equals 0, 
it outputs low. This makes Binseq useful for rhythmic gating, 
switching between parameter states, toggling effects and 
building generative rhythmic systems among many other use 
cases. Because the sequence changes every time a new 
number is entered, it becomes possible to create evolving and 
generative modulation behaviors not achievable with traditional 
sequencers. 

Similarly to Euclidian Gate, Binseq also includes a preset recall 
system, wherein nine preset squares allow for quick storing and 
recalling of patterns. This enables seamless performance 
transitions between binary patterns. 
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1.5 

Cellular Mod 

Cellular Mod is a Max for Live modulation device that generates 
complex control signals using a 9-bit elementary cellular 
automata system. Popularized by Stephen Wolfram, Elementary 
Cellular Automata systems are one-dimensional arrays where 
each digit has two possible states (0 or 1) and evolves 
according to deterministic rules based solely on the states of its 
nearest neighbors. Despite their simplicity, these systems can 
exhibit a wide range of behaviors, from stable repetition to 
chaotic unpredictability. By translating these binary states into 
modulation signals, Cellular Mod brings algorithmic complexity 
into Ableton’s ecosystem in a musically accessible way. 

The device contains a row of 9 binary cells, each of which can 
be either high (1) or low (0). The next generation of the 
automaton is computed according to a user-selected rule. Each 
rule defines a distinct behavior pattern. Some produce stable 
patterns, some oscillate, and others generate unpredictable 
complexity. 

Similar to Binseq and Euclidian Gate, instead of updating on an 
internal clock, Cellular Mod advances to the next generation 
whenever a MIDI note is received. This allows the automaton’s 
evolution to be rhythmically precise and fully integrated into a 
performance or sequencer workflow. Every MIDI trigger shifts 
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the system forward by one generation, producing a new 9-bit 
pattern. 

Each of the nine cells outputs a modulation signal that can be 
mapped to parameters across Ableton Live. Each binary cell has 
included rise and fall slope parameters with the option of 
logarithmic or linear change over time, as well as variable range 
settings. This makes the output smoother and more musically 
usable than raw binary on/off values, while still preserving the 
underlying generative structure of the automaton. 7
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1.6 

Time Accumulator 

Time Accumulator is a real-time temporal processing device 
that generates stretched, frozen, and smeared audio textures by 
scanning through a continuously updated circular delay buffer. 
Rather than employing granular or frequency-domain 
techniques, the device performs its time manipulation entirely 
in the time domain by dynamically adjusting the read position 
of a long delay line. 

Incoming audio is continuously written into a pair of 20-second 
delay buffers implemented using Max’s delay~ object. A read 
head then retrieves samples from an offset position within this 
buffer. The output at each time sample can be defined as: 

y[n]=buffer[n−r(t)] 

where r(t) is a time-varying delay offset measured in samples. 
The motion of the read head is generated by a linear envelope 
produced by max’s line~ object. 

The stretch parameter determines the maximum temporal 
window the device scans through, while grain size determines 
the rate of traversal. Smaller stretch sizes produce rapid scans 
through the buffer (resulting in jittery micro-slices), whereas 
larger stretch sizes create slow, highly smeared temporal 
washes. Because the entire process occurs in the time domain 
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and uses smooth-linear interpolation, the resulting sound 
retains the original timbral identity while dramatically altering its 
temporal structure.  

The overall effect is a fluid, continuously evolving temporal 
smear where the device effectively plays back a moving window 
of the recent past. By manipulating the speed and range of the 
read head, Time Accumulator produces textures ranging from 
subtle widening and softening to dense, evolving pads and 
frozen harmonic masses. This technique provides a 
computationally simple yet sonically rich alternative to granular 
or FFT-based time-stretching.
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1.7 

Fractal Dream 

Fractal Dream is an Ableton Live visualizer that renders a two-
dimensional strange attractor in real time and exposes its 
underlying parameters as performative controls. The patch is 
implemented in jit.gen and iteratively updates a point (xn,yn) 
according to a four-parameter non-linear map inspired by the 
fractal dream strange attractor, governed by the following 
equations: 

xn+1= xn+sin(a yn) + c cos(a xn) 

yn+1= yn+sin(b xn) + d cos(b yn) 

In these equations, a, b, c and d are user-controllable 
coefficients. In the jit.gen patch, the incoming position vector is 
split into its x and y components using the swiz object. Each 
component is multiplied by the corresponding parameter (a or 
b), passed through both sine and cosine functions, and then 
scaled by the secondary parameters (c and d). The scaled 
cosine term and raw sine term are summed to create a non-
linear offset, which is then added back to the original 
coordinate. The result is packed into a new vector and fed back 
into the system on the next iteration, producing the familiar 
dense, filament-like trajectories characteristic of strange 
attractors. 



￼20

From a performance perspective, incoming MIDI notes act as 
triggers to reseed and reanimate the attractor. Each note can 
initiate a new trajectory or clear and redraw the point cloud, 
effectively tying the visual evolution of the attractor to the 
rhythmic structure of a performance or piece of music. 
Modifying the a, b, c and d parameters allow for continuous 
changes that dramatically reshape the attractor from tight, 
orbiting loops to chaotic, diffuse clouds.5
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1.8 

Quanta Granulator 

Quanta Granulator is a granular sampling and microsound 
processing device that can also function as a spectral freeze. 
The device operates by segmenting incoming or recorded 
audio into discrete grains and rearticulating them according to 
a set of controllable parameters. Quanta Granulator enables a 
wide range of temporal, spectral, and textural audio 
transmutations. 

The density parameter controls the number of grains generated 
over time, directly affecting the perceived thickness and 
continuity of the output texture. Grain size determines the 
duration of each individual grain, spray introduces stochastic 
variation to the playback position of each grain, spread applies 
randomized pitch deviation across grains, and grain pitch sets 
the global transposition applied to the granular system. 

In addition to these core parameters, the device includes a 
built-in two-dimensional XY control matrix, allowing pairs of 
parameters to be modulated simultaneously for expressive, 
performance-oriented interaction. A dry/wet control enables 
continuous blending between processed and unprocessed 
signal, and an integrated record function allows incoming audio 
to be captured directly into the internal buffer for immediate 
granular manipulation. Together, these features position Quanta 
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Granulator as a flexible tool for microsound composition, time-
domain abstraction, and real-time spectral freezing.16
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1.9 

Esoteric Noise Generator 

Esoteric Noise Generator is a stochastic noise generator and 
extreme distortion implemented as a Max for Live audio effect. 
The device functions through a network of interlocked noise 
sources, sinusoidal oscillators, and sample-and-hold units, all 
driven by the incoming audio’s amplitude and a bank of 
randomizable control parameters. The result is a responsive 
noise instrument that can function both as an autonomous 
sound source and as a dynamically keyed layer over existing 
material.  

Stereo audio enters the device and is immediately scaled by an 
input level control, implemented as a live.dial driving a *~ 
object. This gain-controlled input is then passed to a clip~ 
stage. In parallel, the unprocessed input is routed to a 
dedicated live.gain~ object to form the dry path. 

The core of the devices behavior is built from several parallel 
chains of noise~, sah~, and cycle~ objects, combined through 
multiplication. Each chain begins with a white noise source 
(noise~) whose output is periodically sampled by sah~. The 
sampling input of each sah~ is driven by the clipped input 
signal, so the rate and pattern of value changes in the control 
streams are coupled to the dynamics of the incoming audio. 
The sampled values are then scaled by user-accessible 
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parameters and used in two main ways, both as a frequency 
control for cycle~ objects which function as noise-modulated 
sinusoidal oscillators, and as amplitude controls for various *~ 
stages, effectively acting as stochastic VCA envelopes. 

In one branch, a rand~ object is multiplied by itself and used to 
modulate the frequency of a cycle~ unit, which creates a slowly 
wandering, quasi-chaotic low-frequency control signal that is 
then subtracted and re-scaled before being injected back into 
the main modulation bus feeding the clip~ object. 
Conceptually, this turns the device into a small feedback 
network: the audio input excites the modulators, but the 
modulators also self-condition the envelope that drives them. 

Multiple noise/S&H oscillator paths are instantiated in parallel, 
feeding two limi~ objects (one per channel). These act as safety 
limiters on the wet noise output, ensuring that extreme 
parameter combinations and randomizations remain within a 
controlled dynamic range. 

A key aspect of Esoteric Noise Generator is its dedicated 
randomization engine implemented through a multirand 
subpatch. Clicking the randomize text button triggers a button 
that bangs the multirand subpatch. Inside this subpatch a bank 
of random objects generate random integer values which are 
then mapped into musically meaningful domains via multiple 
scale objects, which are then routed to various parameters in 
the feedback network. A single click randomizes oscillator 
frequencies, modulation depths, offset ranges, and the internal 
nonlinear scaling factor that shapes the envelope feeding clip~. 
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Because of the complexity of each parameter, each 
randomization yields a unique and distinct characteristic.2
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1.10 

Mesh Visualizer 

Mesh Visualizer is an audio-reactive Max for Live Device that 
uses audio from Ableton Live to modulate a generative mesh 
lattice. The device analyzes incoming audio and maps 
amplitude and spectral information to parameters governing 
the deformation, density, and motion of a three-dimensional 
mesh structure, producing visuals that evolve in direct 
correspondence with the sonic material. 

Implemented using Max’s Jitter framework, the patch operates 
by routing audio-derived control signals into a matrix-based 
mesh system, where continuous parameter modulation results 
in fluid, time-varying transformations of the lattice. This 
approach allows rhythmic, timbral, and dynamic characteristics 
of sound to be rendered visually, reinforcing the relationship 
between auditory and visual domains within a performance or 
compositional context. 

The design of Mesh Visualizer is informed by prior generative 
visualization practices, including the work of Duncan Wilson, 
and was developed through the adaptation and extension of 
existing educational resources on audio-reactive mesh 
synthesis in Max. By integrating visual generation directly into 
the Ableton Live environment, the device functions as both a 
real-time performance visualizer and an exploratory tool for 
studying the coupling between sound, motion, and form.14 
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Section 2 
  

Midi Controllers 

The following section covers a series of midi control devices 
built using Teensy microcontrollers and custom printed PCBS, 
intended to provide novel control interfaces for digital audio 
systems. I have distributed and sold these devices in small 
scales both preassembled and as kits.
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2.1 

Nunchuck Controller 

Nunchuck Controller is a gestural MIDI interface that 
repurposes a Nintendo Wii Nunchuck as a compact, one-
handed control surface for digital audio systems. The device 
exposes the nine continuous control sources available on a 
nunchuck, including a two–axis joystick (X, Y), three axes of 
acceleration (accel X, Y, Z), and two buttons (C and Z). Each 
stream of sensor data is translated into MIDI Control Change 
(CC) messages that can be mapped to any parameter in DAWs 
or stand alone instruments, allowing performers to shape 
sound through small, intuitive hand movements rather than 
mouse or trackpad gestures. 

The hardware consists of a custom PCB hosting a Teensy 3.1 
microcontroller and an Adafruit Wii Nunchuck Breakout 
Adapter. The firmware, written in Arduino C++ using the 
WiiChuck and Teensy usbMIDI libraries, continuously polls the 
Nunchuck over I²C and unpacks the raw sensor array into 
individual channels. To reduce jitter and make the motion feel 
smooth, each accelerometer and joystick stream is low-pass 
filtered using a simple running average: 

￼  xlp(n) =
xprev(n − 1) + xraw(n)

2
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where xraw​ is the latest unfiltered reading and xlp is the 
smoothed value stored as the new “previous” sample.

After filtering, all values are linearly mapped and constrained 
into the standard 7-bit MIDI range [0,127]. For example, joystick 
values arrive as 8-bit integers [0,255] and are scaled to 127 
utilizing the following Arduino code: 

￼  

The firmware also performs basic noise-gating and change-
detection. CC messages are only sent when a parameter moves 
beyond a small threshold (e.g. a difference of more than one 
step for the joystick, or a minimum delta in the accelerometer 
data). This prevents unnecessary MIDI traffic and makes the 
device feel responsive rather than noisy. Each sensor is routed 
to a fixed CC number (e.g. joystick X/Y on CC 102–103, 
accelerometer axes on CC 106–108, buttons on CC 104–105) 
on a dedicated MIDI channel, so mappings can be recalled 
consistently across projects.18

xMIDI = constrain(map(xraw, 0,255, 0,127), 0, 127)
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2.2 

4Joy 

4Joy is a compact gestural MIDI controller designed to 
maximize expressive multidimensional control through minimal 
motion of a single hand. The device captures nine continuous 
control streams using four miniature two-axis joysticks and a 
single time-of-flight distance sensor. Like Nunchuck Controller, 
it is built around a Teensy microcontroller and two custom-
designed printed circuit boards. Each joystick provides 
independent X and Y control parameters, and the ToF sensor 
provides a distance based control channel. Together these 
sensors create a dense and high-resolution gestural interface 
suitable for performance, sound design, and live modulation 
workflows. 

At the firmware level, each joystick axis is sampled as an analog 
input, then linearly mapped into the standard 7-bit MIDI CC 
range. 

To counteract jitter and sharpen the response of the physical 
hardware, each axis is processed with the same lightweight low-
pass filter used in the Nunchuck Controller: 

￼  xlp(n) =
xprev(n − 1) + xraw(n)

2
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The time-of-flight sensor (a VL6180X) is sampled over I²C and 
filtered using the same scheme, then compressed into a 
musically useful range. 

To keep the device responsive but not noisy, 4Joy uses a dead-
zone strategy around the joystick’s mechanical center. For each 
axis, the firmware checks whether the filtered value has moved 
sufficiently far from the central region (approx. 60–66). Only 
when the gesture exceeds this threshold does the firmware 
transmit a MIDI CC message. This ensures expressive resolution 
when the performer intends to move, but prevents the analog 
noise floor from flooding the host with unnecessary data. 

Each control source is routed to a fixed, predictable CC 
assignment (CC 16–23 for the four joysticks and 24 for the ToF 
sensor). This consistency enables reproducible mappings 
across DAWs and other digital environments. All nine channels 
operate on a single MIDI port and can be played 
simultaneously,  

4Joy is a small-format but highly articulate gestural instrument. 
Its ability to shape nine parameters at once with one hand offers 
a unique performance vocabulary, particularly suited for 
electronic musicians seeking continuous, fluid and dynamic 
modulation without relying on large control surfaces or 
touchscreens. 18 
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2.3 

Seraph 

Seraph is an open-source hardware and software platform 
intended to facilitate the rapid creation of USB-MIDI controllers 
using the Teensy 4.1 microcontroller. The platform comprises a 
purpose-built PCB breakout board and a complementary 
firmware/codebase leveraging the Teensy USB-MIDI library. The 
breakout board routes input/output pins on the teensy for 
peripherals including but not limited to buttons, 
potentiometers, LEDs, and 12C sensors, and exposes the 
microcontroller’s full pin-set for easy expansion, while the 
codebase provides a modular framework for mapping physical 
controls to MIDI messages, and supports customization for 
musical controllers. The Seraph platform is intended to reduce 
development and prototyping time, and lowers the barrier of 
entry for experimental MIDI hardware projects. Because the full 
Teensy pin-set is exposed and the code mapping is modular, 
users can adapt the board for many controller formats. The 
open-source documentation encourages remixing and 
derivative builds. For the past two years the board has been 
distributed to students in the Interface Design class at Calarts, 
who have utilized it as an educational resource and conducted 
a variety of prototype builds. Seraph was developed at CalArts 
over several years by myself and Ajay Kapur. 18
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Section 3 
  

VSTs 

The following section covers a series of VST audio effect plugins 
built in JUCE C++, which are designed to produce novel and 
interesting audio transmutations for experimental sound design 
and production practices.
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3.1 

PitchBlur VST 

Pitchblur VST is an FFT-based spectral multi-effect processor 
that operates via a Short-Time Fourier Transform (STFT) of its 
incoming audio signal, and as the name suggests, is essentially 
a VST port of the previously mentioned Pitchblur Max for Live 
device, built in JUCE C++.  The plugin can be used in Windows, 
Mac and Linux operating systems either as a standalone 
application or within a DAW. In terms of DSP, each incoming 
block of samples is windowed and transformed into the 
frequency domain, where per-bin magnitude and phase are 
manipulated before being resynthesized via an overlap–add 
function. Like its Max for Live equivalent, the spectral blur stage 
performs phase multiplication across successive FFT frames 
creating diffuse, reverb-like clouds of partials whose character 
depends strongly on the chosen FFT size. The denoise and 
deharm processes implement complementary per bin 
amplitude-based gating. For the denoise function, bins whose 
magnitudes fall below a user-defined threshold are attenuated 
or removed, suppressing low-level noise and room tone, while 
for the deharm function, the inverse mapping is applied so that 
quieter, noise-like components are emphasized and more tonal, 
harmonic partials are reduced. Together, these operations allow 
the plugin to traverse a large range of spectral effect processes, 
seamlessly moving between highly abstracted and 
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decorrelated textures all while preserving the phase coherence 
sufficient for stable resynthesis. The FFT algorithm used in this 
device was borrowed from the audio dev blog: https://
audiodev.blog/fft-processing/.8

https://audiodev.blog/fft-processing/
https://audiodev.blog/fft-processing/
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3.2 

RMDistortion 

RMDistortion is a JUCE C++ based nonlinear distortion 
processor designed to produce extreme harmonic spectral 
instability through a nested waveshaping function. Rather than 
relying on conventional clipping or smooth saturation curves, 
the processor implements a compound nonlinear transfer 
function defined as: 

￼  

where x is the input sample, and s1,s2 and s3​ correspond to 
user-controlled shaping coefficients.  

The shaping pipeline operates in three conceptual stages: first 
the incoming signal is cubed (x3), exaggerating dynamic 
asymmetry. This term is then scaled by s1 before passing 
through an inner hyperbolic tangent layer, which reduces 
numerical runaway while retaining some curvature. This 
intermediate output is then scaled again and passed through a 
sine mapping, introducing periodic folding and discontinuous 
zero-cross deviations. This stage acts like a wavefolder, but with 
a smooth central response that excites chaotic behavior at 
higher drive levels. A final scaling and tanh function bound the 
output, preventing digital clipping while maintaining the harsh 
and harmonically rich structure created upstream. The device 

y = tanh(sin(tanh(x3 ⋅ s1) ⋅ s2) ⋅ s3)
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produces extreme and unpredictable distortion effects, and 
with four relatively unmarked and esoteric parameter control 
inputs, it allows the user to explore its chaotic and unstable 
processing behavior intuitively through a process of listening. 
The plugin is compatible in Mac, Windows and Linux operating 
systems and can be used as a standalone application or as a 
plugin inside of a DAW. The devices custom UI and animated 
parameter knob were designed in Illustrator and Figma. 
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Section 4 
  

Microphones 

The following section documents a series of experimental 
microphones I have designed, manufactured, and distributed, 
each intended to extend human auditory perception into 
typically inaccessible domains. Whereas conventional 
microphones capture air-borne pressure fluctuations, these 
devices are engineered to couple with non-traditional mediums 
such as water, electromagnetic fields, and mechanical 
resonances, and through a variety of processes, translate these 
vibrational activities into audible signals. By treating the 
microphone not only as a recording tool but as a means of 
revealing otherwise imperceptible phenomena, these designs 
function as instruments of sonic inquiry, expanding the palette 
of field recording, sound design, and electronic music 
practices.
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4.1 

Hydrophones 

My custom hydrophones are built from waterproofed 
piezoelectric disk transducers designed to capture pressure 
waves in underwater environments. Each piezo element is 
housed inside a custom 3D-printed enclosure which is 
subsequently filled with a casting resin formulated to match the 
density of water. Utilizing resin of this specific density ensures 
that the hydrophone accurately reproduces underwater sound 
with reduced spectral deviation, distortion, or muffling. 

To ensure stable submersion, a weighted steel nut is 
embedded within the enclosure. This component adds mass to 
the microphone, allowing it to sink reliably and remain 
positionally stable in moving water. After assembly, the 
enclosure is coated in multiple layers of PlastiDip to create a 
fully waterproof and electrically isolated seal capable of 
withstanding long-term immersion. 

These hydrophones are constructed using high-grade shielded 
and gold-plated microphone cable to minimize interference 
and maintain signal integrity over long cable runs, and I have 
produced both balanced XLR and unbalanced ¼ inch versions. 
These hydrophones are intended to be accessible tools for 
capturing the dense and often overlooked sonic worlds of 
underwater environments and ecosystems. 
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4.2 

EMF Mics 

My EMF microphones (electromagnetic field microphones) are 
designed to detect electromagnetic fields rather than acoustic 
vibrations, translating invisible EM activity into audible signals. 
Each microphone consists of a tightly wound copper coil (either 
air-cored or wrapped around a small ferromagnetic core) 
soldered directly to a shielded microphone cable and 
terminated at a 1/4-inch jack. 

Movement of alternating electromagnetic fields near the coil 
induces a small electrical current, which is then amplified and 
monitored like any other audio source. These microphones 
allow the user to listen to circuitry, power transformers, LEDs, 
household appliances, computers, motors, and any other EM-
active device, revealing hidden phenomena and sonic 
information embedded in technological infrastructures. These 
devices serve as both investigative tools and creative 
instruments, enabling the recording and perception of 
electromagnetic activity that typically remains outside the 
limited domain of human perception.
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Section 5 
  

Conclusion 

This thesis documents my recent work in the development of a 
diverse set of audio and production tools, and positions 
toolbuilding as an integral component of my creative practice. 
Rather than treating instruments, software, and interfaces as 
neutral or fixed, I hope to approach them as sites of artistic 
inquiry in their own right. Through the process of designing and 
constructing my own tools, I have been able to shape the 
conceptual and procedural frameworks through which I make 
work. Toolbuilding functions here as a creative act, and resists 
reliance on standard or industrialized workflows. The tools 
presented in this thesis reflect an ongoing commitment to 
toolbuilding as an artistic approach, and serve as both practical 
instruments and artifacts of evolving research in the area. 

An important aspect of this project is that many of the tools 
described in this thesis are not only built for personal use, but 
are also freely distributed to a broader community of artists. 
Through releasing software instruments, hardware devices, and 
open-source platforms, my practice of toolbuilding extends 
beyond individual authorship and into a shared creative 
ecosystem. Free distribution allows these tools to circulate, be 
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adapted, and generate outcomes that exceed the scope of a 
single practice. 

Making tools available to others introduces an additional layer 
of responsibility. Designing for distribution requires clarity, 
robustness, and usability, but also invites unforeseen 
interpretations and uses. In this way, each tool functions less as 
a finished and discreet product and more as a framework for 
creative possibility, one that enables other artists to explore 
sounds, workflows, and ideas that may not have been possible 
otherwise.

Engaging in the distribution of creative tools reframes 
toolmaking as a social act. It positions the artist not only as a 
producer of work, but as a contributor to the conditions under 
which creative work can take place. By sharing these tools, this 
project embraces a collaborative ethos in which technical 
knowledge, experimentation, and curiosity are multiplied 
across a community of users, with a goal of pushing the 
envelope of what is possible in the realm of creative sound 
practices. 
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