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Abstract

This thesis project documents my recent work in the research
and development of an arsenal of creative audio tools, covering
VST and max for live plugins, physical MIDI interfaces, and
microphones. The project will discuss both the technical
specifications of each device and the conceptual basis of
developing an artistic practice that is engaged with the process
of building its own tools.



Section 1

Max for Live Projects

This following section covers a selection of the various Max for
Live audio tools | have created and released over my time at
Calarts. They include modulation devices, experimental audio
processing tools, visualizers, and sound generators. Globally |
have sold over 7000 of these units in 94 different countries
using an open source pay what you want model. In terms of
their research and development, many of these devices were
created in response to a lack of similar options available in the
audio production marketplace and to satisfy my own creative
need for interesting audio tools within my sound practice.
These devices and their demo videos are hosted online on
Gumroad, where they can be downloaded with a pay what you
want model: https://irisdevices.gumroad.com/
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1.1

MCLFO

MCLFO is a Max for Live modulation device that utilizes the
theory of the harmonic series to control the frequencies of a 9-
band, 9-oscillator sine wave multi-channel LFO. The values of
each LFO can be mapped to separate parameters inside
Ableton Live, and each mapping has variable range settings.
The oscillator’s frequency ratios are synchronized to each other
and can be adjusted with seven modes: Harmonic,
Subharmonic, Exponential, Deviate, Decide, Increment, and
Spread. The device has two primary adjustable parameters:
frequency and multiplier. The frequency parameter sets the
fundamental frequency that is used to generate the harmonic
series across the LFOs, and the multiplier parameter modifies
the ratio between successive oscillators.

The core of the device is implemented with Max’s mc objects.
An mc.sig~ receives a pak message comprised of a mode
symbol and two floating-point parameters (which consist of the
fundamental and multiplier values). These signals then drive an
mc.cycle~ object that produces the ten-channel bank of phase-
coherent sine oscillators. The raw bipolar output of this
oscillator bank in the range of =1 to 1 is converted to a unipolar
modulation signal via mc.scale~ and then down-sampled to a
numerical value using mc.snapshot~. The resulting ten floating



point values are routed with mc.route and visualized with a ten
band multislider. These values are then mapped to the standard
0-127 range for direct use as automation and MIDI-style control
values.

Each device mode applies a unique formula to determine the
frequency of the oscillators and their relationships to each
other. Harmonic mode creates a harmonic series across the
LFOs with the following formula:

F.=F-(1+N-C)
where N is the multiplier and C represents the oscillator index.
For example, in Harmonic mode a frequency input of 440 and a
multiplier input of 1 would generate the following series: 440,
880, 1320, 2640, etc, whereas a frequency input of 440 and a
multiplier input of 0.5 would generate this series: 440, 660, 880,
1100, etc. Subharmonic mode generates a subharmonic series
using the following formula:

F.=F-(1-N-C)
For example, with a frequency input of 100 and a multiplier of 1,
the device would output the following frequency values: 100,
50, 25, 12.5, etc. Exponential mode creates an exponential

harmonic series across the oscillators, governed by the
following equation:



The Spread mode distributes the LFO frequencies linearly
across a user-defined range, yielding evenly spaced rates
between a minimum and maximum value. For example, in the
Spread mode, if the device used 4 LFOs and had a frequency
input of 10 and a multiplier input of 0, it would output LFO
speeds of 0, 2.5, 5, and 7.5 hertz.

Increment mode treats the multiplier as an additive step size,
increasing the frequency value of each LFO by an increment
specified by the multiplier parameter. For example, in
Increment mode with a frequency of 10 and a multiplier of 10,
the device would output 10, 20, 30, 40, 50, 60. This mode is
governed by the equation:

F,=F+N-C

The remaining modes—Deviate and Decide—offer other creative
variations centered around randomness.

The device enables a wide range of modulation patterns
tailored to experimental and musical contexts. The frequency
parameter can also be brought into negative hertz, which
reverses the direction of the oscillation. This device expands the
application of harmonic theory beyond sound synthesis by
applying harmonic series principles to parameter automation in
music production. By bridging these domains, it offers a novel
approach to integrating natural acoustic processes and
phenomena into sound design and modulation workflows.6
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1.2

Pitchblur

Pitchblur is an Fast Fourier Transform based spectral multi-effect
audio device. Its core DSP is built around a bank of per-bin
processes running inside a series of pfft~ subpatches. Each
subpatch operates on the complex spectrum of the input signal
to provide spectral denoise, deharmonic, blur, gate, and pitch-
shift operations that can be combined to produce a myriad of
interesting audio transmutations.

The device uses a variable FFT size (from 16 up to 32768
samples), allowing the user to move between high temporal
resolution and high spectral resolution. Inside each pfft~, the
incoming audio is analyzed via an fftin~ object, yielding the real
and imaginary components for each frequency bin. These are
converted to magnitude and phase using cartopol~, and
processed by the various effect stages. Then these phase and
amplitude values are resynthesized with poltocar~ and fftout~.
All control parameters (transposition, phase multiplication,
noise reduction, harmonic reduction, gate amount, etc.) are
passed into the FFT domain via dedicated in objects, making
the spectral processing fully modulatable from the Max for Live
interface.



The spectral blur section is driven by a phase multiplication
control routed to the phase stream of each bin. This control
scales the per-bin phase with *~ objects before resynthesis,
effectively decorrelating the phase relationships between
neighbouring bins. As the multiplier moves away from 1, inter-
bin phase relationships become increasingly unstable,
producing a characteristic “smearing” or reverb-like diffusion.
This blur is computed per FFT frame and is further shaped by
the chosen FFT size, with larger windows yielding more
pronounced spectral smear.

The denoise and deharmonic behaviours are implemented as
complementary amplitude-gating operations on the magnitude
of each bin. A set of noise reduction and harmonic reduction
controls modulate thresholds that feed a network of
comparison objects ( >~ and <~). In the denoise configuration,
bins whose magnitude exceeds a user-defined threshold are
allowed to pass, suppressing low-level noise and room tone. In
the deharmonic configuration, the inverse logic is applied:
lower-amplitude, noise-like bins are preserved while stronger,
more harmonic bins are attenuated, effectively inverting the
typical denoiser and isolating inharmonic and noisy
components of the spectrum. These gated magnitude streams
are then recombined with their respective phase components
and routed through selector~ objects and a crossfade system to
control the relationship between dry and processed spectra.

Pitch shifting is handled by phase-vocoder-style transposition
using gizmo~. The transposition control is injected into the FFT
processing via a dedicated inlet, and gizmo~ operates directly



on the complex spectrum to shift the perceived pitch without
altering the overall duration. Additional phase-domain utilities
such as phasewrap~ and framedelta~ are used to manage inter-
frame phase continuity, ensuring that even extreme
transpositions and blur amounts remain relatively artifact-stable
and musically usable.

Pitchblur functions as a modular spectral laboratory: a single
Max for Live device that exposes the inner workings of FFT
analysis/resynthesis and allows denoising, deharmonization,
spectral blurring, gating, and pitch shifting to be combined
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within one coherent interface. Conceptually, the project
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extends the classic phase vocoder into a performable,
< < parameter-driven tool, translating the mathematics of the FFT

and complex plane into an intuitive set of controls for sound
design, diffusion, and experimental audio processing.4
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1.3

Euclidian Gate

Euclidian Gate is a gate sequencer built on the Euclidean
rhythm algorithm. Euclidean rhythms utilize mathematical
functions to distribute a chosen number of events as evenly as
possible across a fixed number of steps. This logic appeared in
musical traditions across the world including clave patterns and
Balkan rhythms long before it was mathematically described. In
Euclidian Gate, this mathematical structure is utilized as a
flexible rhythmic modulator that allows for the generation of
evolving and complex gate sequencer patterns.

The Subdivision parameter of the device defines how the
Euclidean pattern aligns to musical time in Ableton. A
subdivision value of 16 would generate 16th notes, a
subdivision value of 8 would generate 8th notes, and a
subdivision value of 3 would generate % note triplets for
example. Changing the subdivision value effectively scales the
temporal resolution of the output gate pattern.

The Steps parameter determines the total number of steps or
possible binary events within the Euclidean sequence. This
corresponds to the length of one Euclidean cycle.

The Events parameter defines the number of active triggers
distributed across the sequence. Increasing or decreasing the
number of events changes the density of the resulting pattern.



The Rotate parameter circularly shifts the pattern, allowing the
user to offset the generated Euclidean rhythm.

Each triggered step passes through a built-in ADSR envelope,
allowing for dynamic control over the amplitude shape of each
gated pulse. This transforms the sequencer from a purely binary

trigger source into a dynamic rhythmic sculpting tool.

Rotate

Euclidian Gate also includes sixteen preset slots represented as
small squares in the Ul. Shift-clicking stores the current
configuration and clicking recalls it. This enables performance-
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The device hopes to bring a mathematically elegant and
globally rooted rhythmic principle into an intuitive Max for Live
" environment. By combining Euclidean distribution, envelope
shaping, rotation, and preset recall, the device offers a fluid and

expressive way to generate complex polyrhythmic modulation
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1.4

Binseq

Binseq is a Max for Live modulation device that generates
rhythmic switching patterns using evolving binary sequences.
Instead of relying on fixed step sequencing, Binseq converts
user-specified base 10 integers into binary form and uses these
bit patterns as modulation states. This approach makes it
possible to explore a large and highly varied space of rhythmic
and structural patterns using a single parameter. Because
binary sequences naturally encode on/off states, they map
intuitively onto rhythmic gates, switches, and parameter toggles
within Ableton Live.

The device accepts a user input value N in the range 0 < N <
4096. Binseq then computes the binary representation of this
number using an algorithm of bitwise intersection and
bitshifting displayed on the left. This binary pattern is then
looped continuously to form the modulation sequence. This
allows for 4096 distinct rhythmic states using a single control.

Advancing through the binary sequence is driven entirely by
incoming MIDI notes. Each MIDI event increments the
sequence index, allowing the user to inject highly precise
timing, syncopation, and groove into the modulation. Because
the rhythm comes from MIDI rather than an internal clock,
Binseq can be tightly aligned to any performance or
sequencing workflow.
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Each bit in the binary sequence outputs a switching signal that
can be mapped to any parameter inside Ableton Live. When a
bit equals 1, the device outputs a high signal; when it equals O,
it outputs low. This makes Binseq useful for rhythmic gating,
switching between parameter states, toggling effects and
building generative rhythmic systems among many other use
cases. Because the sequence changes every time a new
number is entered, it becomes possible to create evolving and
generative modulation behaviors not achievable with traditional
sequencers.

Similarly to Euclidian Gate, Binseq also includes a preset recall
system, wherein nine preset squares allow for quick storing and
recalling of patterns. This enables seamless performance
transitions between binary patterns.
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1.5

Cellular Mod

Cellular Mod is a Max for Live modulation device that generates
complex control signals using a 9-bit elementary cellular
automata system. Popularized by Stephen Wolfram, Elementary
Cellular Automata systems are one-dimensional arrays where
each digit has two possible states (0 or 1) and evolves
according to deterministic rules based solely on the states of its
nearest neighbors. Despite their simplicity, these systems can
exhibit a wide range of behaviors, from stable repetition to
chaotic unpredictability. By translating these binary states into
modulation signals, Cellular Mod brings algorithmic complexity
into Ableton’s ecosystem in a musically accessible way.

The device contains a row of 9 binary cells, each of which can
be either high (1) or low (0). The next generation of the
automaton is computed according to a user-selected rule. Each
rule defines a distinct behavior pattern. Some produce stable
patterns, some oscillate, and others generate unpredictable
complexity.

Similar to Binseq and Euclidian Gate, instead of updating on an
internal clock, Cellular Mod advances to the next generation
whenever a MIDI note is received. This allows the automaton’s
evolution to be rhythmically precise and fully integrated into a
performance or sequencer workflow. Every MIDI trigger shifts



the system forward by one generation, producing a new 9-bit
pattern.

Each of the nine cells outputs a modulation signal that can be
mapped to parameters across Ableton Live. Each binary cell has
included rise and fall slope parameters with the option of
logarithmic or linear change over time, as well as variable range
settings. This makes the output smoother and more musically
usable than raw binary on/off values, while still preserving the

- underlying generative structure of the automaton. 7

16



Grain Size

\

103 ms
Stretch

17

1.6

Time Accumulator

Time Accumulator is a real-time temporal processing device
that generates stretched, frozen, and smeared audio textures by
scanning through a continuously updated circular delay buffer.
Rather than employing granular or frequency-domain
techniques, the device performs its time manipulation entirely
in the time domain by dynamically adjusting the read position
of a long delay line.

Incoming audio is continuously written into a pair of 20-second
delay buffers implemented using Max's delay~ object. A read
head then retrieves samples from an offset position within this
buffer. The output at each time sample can be defined as:

y[n]=buffer[n—r(t)]

where r(t) is a time-varying delay offset measured in samples.
The motion of the read head is generated by a linear envelope
produced by max's line~ object.

The stretch parameter determines the maximum temporal
window the device scans through, while grain size determines
the rate of traversal. Smaller stretch sizes produce rapid scans
through the buffer (resulting in jittery micro-slices), whereas
larger stretch sizes create slow, highly smeared temporal
washes. Because the entire process occurs in the time domain
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and uses smooth-linear interpolation, the resulting sound
retains the original timbral identity while dramatically altering its
temporal structure.

The overall effect is a fluid, continuously evolving temporal
smear where the device effectively plays back a moving window
of the recent past. By manipulating the speed and range of the
read head, Time Accumulator produces textures ranging from
subtle widening and softening to dense, evolving pads and
frozen harmonic masses. This technique provides a
computationally simple yet sonically rich alternative to granular
or FFT-based time-stretching.
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1.7

Fractal Dream

Fractal Dream is an Ableton Live visualizer that renders a two-
dimensional strange attractor in real time and exposes its
underlying parameters as performative controls. The patch is
implemented in jit.gen and iteratively updates a point (xn,yn)
according to a four-parameter non-linear map inspired by the
fractal dream strange attractor, governed by the following
equations:

xn+1= xn+sin(ayn) + c cos(axn)
yn+1=yn+sin(bxn) + d cos(byn)

In these equations, a, b, c and d are user-controllable
coefficients. In the jit.gen patch, the incoming position vector is
split into its x and y components using the swiz object. Each
component is multiplied by the corresponding parameter (a or
b), passed through both sine and cosine functions, and then
scaled by the secondary parameters (c and d). The scaled
cosine term and raw sine term are summed to create a non-
linear offset, which is then added back to the original
coordinate. The result is packed into a new vector and fed back
into the system on the next iteration, producing the familiar
dense, filament-like trajectories characteristic of strange
attractors.
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From a performance perspective, incoming MIDI notes act as
triggers to reseed and reanimate the attractor. Each note can
initiate a new trajectory or clear and redraw the point cloud,
effectively tying the visual evolution of the attractor to the
rhythmic structure of a performance or piece of music.
Modifying the a, b, c and d parameters allow for continuous
changes that dramatically reshape the attractor from tight,
orbiting loops to chaotic, diffuse clouds.5
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1.8

Quanta Granulator

Quanta Granulator is a granular sampling and microsound
processing device that can also function as a spectral freeze.
The device operates by segmenting incoming or recorded
audio into discrete grains and rearticulating them according to
a set of controllable parameters. Quanta Granulator enables a
wide range of temporal, spectral, and textural audio
transmutations.

The density parameter controls the number of grains generated
over time, directly affecting the perceived thickness and
continuity of the output texture. Grain size determines the
duration of each individual grain, spray introduces stochastic
variation to the playback position of each grain, spread applies
randomized pitch deviation across grains, and grain pitch sets
the global transposition applied to the granular system.

In addition to these core parameters, the device includes a
built-in two-dimensional XY control matrix, allowing pairs of
parameters to be modulated simultaneously for expressive,
performance-oriented interaction. A dry/wet control enables
continuous blending between processed and unprocessed
signal, and an integrated record function allows incoming audio
to be captured directly into the internal buffer for immediate
granular manipulation. Together, these features position Quanta
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Granulator as a flexible tool for microsound composition, time-
domain abstraction, and real-time spectral freezing.16



1.9

Esoteric Noise Generator

Esoteric Noise Generator is a stochastic noise generator and
extreme distortion implemented as a Max for Live audio effect.
The device functions through a network of interlocked noise
sources, sinusoidal oscillators, and sample-and-hold units, all
driven by the incoming audio’s amplitude and a bank of
randomizable control parameters. The result is a responsive
noise instrument that can function both as an autonomous
sound source and as a dynamically keyed layer over existing
material.

Stereo audio enters the device and is immediately scaled by an

&

i’

input level control, implemented as a live.dial driving a *~
object. This gain-controlled input is then passed to a clip~

!

stage. In parallel, the unprocessed input is routed to a

-
/

dedicated live.gain~ object to form the dry path.

)
Aol

The core of the devices behavior is built from several parallel
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chains of noise~, sah~, and cycle~ objects, combined through

i
25

/
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/)

multiplication. Each chain begins with a white noise source

(noise~) whose output is periodically sampled by sah~. The

sampling input of each sah~ is driven by the clipped input
signal, so the rate and pattern of value changes in the control
streams are coupled to the dynamics of the incoming audio.
The sampled values are then scaled by user-accessible

23



parameters and used in two main ways, both as a frequency
control for cycle~ objects which function as noise-modulated
sinusoidal oscillators, and as amplitude controls for various *~
stages, effectively acting as stochastic VCA envelopes.

@
N In one branch, a rand~ object is multiplied by itself and used to
modulate the frequency of a cycle~ unit, which creates a slowly
 neme wandering, quasi-chaotic low-frequency control signal that is
- o then subtracted and re-scaled before being injected back into
e the main modulation bus feeding the clip~ object.
Wm d Conceptually, this turns the device into a small feedback
11 m ST network: the audio input excites the modulators, but the
m mm ......... m O] modulators also self-condition the envelope that drives them.
i . o ------ N 7' Multiple noise/S&H oscillator paths are instantiated in parallel,
; _____ ;m m m feeding two limi~ objects (one per channel). These act as safety
e ﬂ m e limiters on the wet noise output, ensuring that extreme
“ ------- | : parameter combinations and randomizations remain within a
W W controlled dynamic range.
i B e . conzes |
L - e A key aspect of Esoteric Noise Generator is its dedicated
TE R randomization engine implemented through a multirand
N —— “ “ subpatch. Clicking the randomize text button triggers a button
that bangs the multirand subpatch. Inside this subpatch a bank
’ of random objects generate random integer values which are
. then mapped into musically meaningful domains via multiple

scale objects, which are then routed to various parameters in
the feedback network. A single click randomizes oscillator
frequencies, modulation depths, offset ranges, and the internal
nonlinear scaling factor that shapes the envelope feeding clip~.
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Because of the complexity of each parameter, each
randomization yields a unique and distinct characteristic.2



1.10

Mesh Visualizer

Mesh Visualizer is an audio-reactive Max for Live Device that
uses audio from Ableton Live to modulate a generative mesh
lattice. The device analyzes incoming audio and maps

I

amplitude and spectral information to parameters governing
the deformation, density, and motion of a three-dimensional
mesh structure, producing visuals that evolve in direct

correspondence with the sonic material.
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Implemented using Max’s Jitter framework, the patch operates
by routing audio-derived control signals into a matrix-based
mesh system, where continuous parameter modulation results

Background Color

Mesh Color 2 in fluid, time-varying transformations of the lattice. This

Fullscreen g = Drag to Rotate, Opt to Zoom, Cmd to Pan approach allows rhythmic, timbral, and dynamic characteristics

A of sound to be rendered visually, reinforcing the relationship
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&z

between auditory and visual domains within a performance or
compositional context.

The design of Mesh Visualizer is informed by prior generative
visualization practices, including the work of Duncan Wilson,
and was developed through the adaptation and extension of
existing educational resources on audio-reactive mesh
synthesis in Max. By integrating visual generation directly into
the Ableton Live environment, the device functions as both a
real-time performance visualizer and an exploratory tool for
studying the coupling between sound, motion, and form.14
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Section 2

Midi Controllers

The following section covers a series of midi control devices
built using Teensy microcontrollers and custom printed PCBS,
intended to provide novel control interfaces for digital audio
systems. | have distributed and sold these devices in small
scales both preassembled and as kits.
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2.1

Nunchuck Controller

Nunchuck Controller is a gestural MIDI interface that
repurposes a Nintendo Wii Nunchuck as a compact, one-
handed control surface for digital audio systems. The device
exposes the nine continuous control sources available on a
nunchuck, including a two-axis joystick (X, Y), three axes of
acceleration (accel X,Y, Z), and two buttons (C and Z). Each
stream of sensor data is translated into MIDI Control Change
(CC) messages that can be mapped to any parameter in DAWs
or stand alone instruments, allowing performers to shape
sound through small, intuitive hand movements rather than
mouse or trackpad gestures.

The hardware consists of a custom PCB hosting a Teensy 3.1
microcontroller and an Adafruit Wii Nunchuck Breakout
Adapter. The firmware, written in Arduino C++ using the
WiiChuck and Teensy usbMIDI libraries, continuously polls the
Nunchuck over I12C and unpacks the raw sensor array into
individual channels. To reduce jitter and make the motion feel
smooth, each accelerometer and joystick stream is low-pass
filtered using a simple running average:

xprev(n -D+ xraw(n)
2

xlp(”) =
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where xraw is the latest unfiltered reading and xlp is the
smoothed value stored as the new “previous” sample.

After filtering, all values are linearly mapped and constrained
into the standard 7-bit MIDI range [0,127]. For example, joystick
values arrive as 8-bit integers [0,255] and are scaled to 127
utilizing the following Arduino code:

XMIDI = constrain(map(x 0,255,0,127),0, 127)

raw?

The firmware also performs basic noise-gating and change-
detection. CC messages are only sent when a parameter moves
beyond a small threshold (e.g. a difference of more than one
step for the joystick, or a minimum delta in the accelerometer
data). This prevents unnecessary MIDI traffic and makes the
device feel responsive rather than noisy. Each sensor is routed
to a fixed CC number (e.g. joystick X/Y on CC 102-103,
accelerometer axes on CC 106-108, buttons on CC 104-105)
on a dedicated MIDI channel, so mappings can be recalled
consistently across projects.’8



4Joy

4Joy is a compact gestural MIDI controller designed to
maximize expressive multidimensional control through minimal
motion of a single hand. The device captures nine continuous
control streams using four miniature two-axis joysticks and a
single time-of-flight distance sensor. Like Nunchuck Controller,
it is built around a Teensy microcontroller and two custom-
designed printed circuit boards. Each joystick provides
independent X and Y control parameters, and the ToF sensor
provides a distance based control channel. Together these
sensors create a dense and high-resolution gestural interface
suitable for performance, sound design, and live modulation

ji workflows.
léq‘%;—&.q z At the firmware level, each joystick axis is sampled as an analog
input, then linearly mapped into the standard 7-bit MIDI CC
range.

To counteract jitter and sharpen the response of the physical
hardware, each axis is processed with the same lightweight low-
pass filter used in the Nunchuck Controller:

xprev(n -D+ xraw(n)
2

le(l’l) =
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The time-of-flight sensor (a VL6180X) is sampled over I2C and
filtered using the same scheme, then compressed into a
musically useful range.

To keep the device responsive but not noisy, 4Joy uses a dead-
zone strategy around the joystick’s mechanical center. For each
axis, the firmware checks whether the filtered value has moved
sufficiently far from the central region (approx. 60-66). Only
when the gesture exceeds this threshold does the firmware
transmit a MIDI CC message. This ensures expressive resolution
when the performer intends to move, but prevents the analog
noise floor from flooding the host with unnecessary data.

Each control source is routed to a fixed, predictable CC
assignment (CC 16-23 for the four joysticks and 24 for the ToF
sensor). This consistency enables reproducible mappings
across DAWSs and other digital environments. All nine channels
operate on a single MIDI port and can be played
simultaneously,

4Joy is a small-format but highly articulate gestural instrument.
Its ability to shape nine parameters at once with one hand offers
a unique performance vocabulary, particularly suited for
electronic musicians seeking continuous, fluid and dynamic
modulation without relying on large control surfaces or
touchscreens. 18
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2.3

Seraph

Seraph is an open-source hardware and software platform
intended to facilitate the rapid creation of USB-MIDI controllers
using the Teensy 4.1 microcontroller. The platform comprises a
purpose-built PCB breakout board and a complementary
firmware/codebase leveraging the Teensy USB-MIDI library. The
breakout board routes input/output pins on the teensy for
peripherals including but not limited to buttons,
potentiometers, LEDs, and 12C sensors, and exposes the
microcontroller’s full pin-set for easy expansion, while the
codebase provides a modular framework for mapping physical
controls to MIDI messages, and supports customization for
musical controllers. The Seraph platform is intended to reduce
development and prototyping time, and lowers the barrier of
entry for experimental MIDI hardware projects. Because the full
Teensy pin-set is exposed and the code mapping is modular,
users can adapt the board for many controller formats. The
open-source documentation encourages remixing and
derivative builds. For the past two years the board has been
distributed to students in the Interface Design class at Calarts,
who have utilized it as an educational resource and conducted
a variety of prototype builds. Seraph was developed at CalArts
over several years by myself and Ajay Kapur. 18
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Section 3

VSTs

The following section covers a series of VST audio effect plugins
built in JUCE C++, which are designed to produce novel and

interesting audio transmutations for experimental sound design
and production practices.
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3.1

PitchBlur VST

Pitchblur VST is an FFT-based spectral multi-effect processor
that operates via a Short-Time Fourier Transform (STFT) of its
incoming audio signal, and as the name suggests, is essentially
a VST port of the previously mentioned Pitchblur Max for Live
device, built in JUCE C++. The plugin can be used in Windows,
Mac and Linux operating systems either as a standalone
application or within a DAW. In terms of DSP, each incoming
block of samples is windowed and transformed into the
frequency domain, where per-bin magnitude and phase are
manipulated before being resynthesized via an overlap-add
function. Like its Max for Live equivalent, the spectral blur stage
performs phase multiplication across successive FFT frames
creating diffuse, reverb-like clouds of partials whose character
depends strongly on the chosen FFT size. The denoise and
deharm processes implement complementary per bin
amplitude-based gating. For the denoise function, bins whose
magnitudes fall below a user-defined threshold are attenuated
or removed, suppressing low-level noise and room tone, while
for the deharm function, the inverse mapping is applied so that
quieter, noise-like components are emphasized and more tonal,
harmonic partials are reduced. Together, these operations allow
the plugin to traverse a large range of spectral effect processes,
seamlessly moving between highly abstracted and
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decorrelated textures all while preserving the phase coherence
sufficient for stable resynthesis. The FFT algorithm used in this
device was borrowed from the audio dev blog: https://
audiodev.blog/fft-processing/.8



https://audiodev.blog/fft-processing/
https://audiodev.blog/fft-processing/
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3.2

RMDistortion

RMDistortion is a JUCE C++ based nonlinear distortion
processor designed to produce extreme harmonic spectral
instability through a nested waveshaping function. Rather than
relying on conventional clipping or smooth saturation curves,
the processor implements a compound nonlinear transfer
function defined as:

y = tanh(sin(tanh(x3 - s1) - s2) - s3)

where x is the input sample, and s1,s2 and s3 correspond to
user-controlled shaping coefficients.

The shaping pipeline operates in three conceptual stages: first
the incoming signal is cubed (x3), exaggerating dynamic
asymmetry. This term is then scaled by s1 before passing
through an inner hyperbolic tangent layer, which reduces
numerical runaway while retaining some curvature. This
intermediate output is then scaled again and passed through a
sine mapping, introducing periodic folding and discontinuous
zero-cross deviations. This stage acts like a wavefolder, but with
a smooth central response that excites chaotic behavior at
higher drive levels. A final scaling and tanh function bound the
output, preventing digital clipping while maintaining the harsh
and harmonically rich structure created upstream. The device
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produces extreme and unpredictable distortion effects, and
with four relatively unmarked and esoteric parameter control
inputs, it allows the user to explore its chaotic and unstable
processing behavior intuitively through a process of listening.
The plugin is compatible in Mac, Windows and Linux operating
systems and can be used as a standalone application or as a
plugin inside of a DAW. The devices custom Ul and animated
parameter knob were designed in lllustrator and Figma.
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Section 4

Microphones

The following section documents a series of experimental
microphones | have designed, manufactured, and distributed,
each intended to extend human auditory perception into
typically inaccessible domains. Whereas conventional
microphones capture air-borne pressure fluctuations, these
devices are engineered to couple with non-traditional mediums
such as water, electromagnetic fields, and mechanical
resonances, and through a variety of processes, translate these
vibrational activities into audible signals. By treating the
microphone not only as a recording tool but as a means of
revealing otherwise imperceptible phenomena, these designs
function as instruments of sonic inquiry, expanding the palette
of field recording, sound design, and electronic music
practices.
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4.1

Hydrophones

My custom hydrophones are built from waterproofed
piezoelectric disk transducers designed to capture pressure
waves in underwater environments. Each piezo element is
housed inside a custom 3D-printed enclosure which is
subsequently filled with a casting resin formulated to match the
density of water. Utilizing resin of this specific density ensures
that the hydrophone accurately reproduces underwater sound
with reduced spectral deviation, distortion, or muffling.

To ensure stable submersion, a weighted steel nut is
embedded within the enclosure. This component adds mass to
the microphone, allowing it to sink reliably and remain
positionally stable in moving water. After assembly, the
enclosure is coated in multiple layers of PlastiDip to create a
fully waterproof and electrically isolated seal capable of
withstanding long-term immersion.

These hydrophones are constructed using high-grade shielded
and gold-plated microphone cable to minimize interference
and maintain signal integrity over long cable runs, and | have
produced both balanced XLR and unbalanced Y4 inch versions.
These hydrophones are intended to be accessible tools for
capturing the dense and often overlooked sonic worlds of
underwater environments and ecosystems.



4.2

EMF Mics

My EMF microphones (electromagnetic field microphones) are
designed to detect electromagnetic fields rather than acoustic
vibrations, translating invisible EM activity into audible signals.
Each microphone consists of a tightly wound copper coil (either
air-cored or wrapped around a small ferromagnetic core)
soldered directly to a shielded microphone cable and
terminated at a 1/4-inch jack.

Movement of alternating electromagnetic fields near the coil
induces a small electrical current, which is then amplified and
monitored like any other audio source. These microphones
allow the user to listen to circuitry, power transformers, LEDs,
household appliances, computers, motors, and any other EM-
active device, revealing hidden phenomena and sonic
information embedded in technological infrastructures. These
devices serve as both investigative tools and creative
instruments, enabling the recording and perception of
electromagnetic activity that typically remains outside the
limited domain of human perception.

41
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Section 5

Conclusion

This thesis documents my recent work in the development of a
diverse set of audio and production tools, and positions
toolbuilding as an integral component of my creative practice.
Rather than treating instruments, software, and interfaces as
neutral or fixed, | hope to approach them as sites of artistic
inquiry in their own right. Through the process of designing and
constructing my own tools, | have been able to shape the
conceptual and procedural frameworks through which | make
work. Toolbuilding functions here as a creative act, and resists
reliance on standard or industrialized workflows. The tools
presented in this thesis reflect an ongoing commitment to
toolbuilding as an artistic approach, and serve as both practical
instruments and artifacts of evolving research in the area.

An important aspect of this project is that many of the tools
described in this thesis are not only built for personal use, but
are also freely distributed to a broader community of artists.
Through releasing software instruments, hardware devices, and
open-source platforms, my practice of toolbuilding extends
beyond individual authorship and into a shared creative
ecosystem. Free distribution allows these tools to circulate, be
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adapted, and generate outcomes that exceed the scope of a
single practice.

Making tools available to others introduces an additional layer
of responsibility. Designing for distribution requires clarity,
robustness, and usability, but also invites unforeseen
interpretations and uses. In this way, each tool functions less as
a finished and discreet product and more as a framework for
creative possibility, one that enables other artists to explore
sounds, workflows, and ideas that may not have been possible
otherwise.

Engaging in the distribution of creative tools reframes
toolmaking as a social act. It positions the artist not only as a
producer of work, but as a contributor to the conditions under
which creative work can take place. By sharing these tools, this
project embraces a collaborative ethos in which technical
knowledge, experimentation, and curiosity are multiplied
across a community of users, with a goal of pushing the
envelope of what is possible in the realm of creative sound
practices.
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