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Abstract 

This thesis examines controlled randomness, how to generate it, how it behaves, and its 

applications. After beginning with the history and context of these methods, this thesis focuses 

on ways of generating pseudo-random and chaotic behavior. Through the research and 

development of hardware and software implementations of unpredictability, I highlight the 

possibilities of audio and visual compositions that rely on attenuated uncertainty. The hardware 

consists of a collection of modular synthesizers conceptualized, designed, and realized by me 

during the past two years. Software comes in the form of explorations of chaotic and pseudo-

random algorithms that includes different implementations of chaotic equations. Finally, the 

thesis addresses applications of these concepts through an interface between a modular 

synthesizer and a computer, the creation of larger feedback systems using elements explored in 

previous chapters, and examples of audio and visual work created with the various methods 

explored herein.  

 

Randomness offers artists and musicians a way of creating works directly influenced by a 

non-human entity in the form of code and circuitry. While not conscious in a way recognized by 

biological entities, these systems of uncertainty seem to contain a life of their own. A 

collaboration between artists and algorithms brings new possibilities to their work, creating new 

possibilities that would otherwise not exist without the other. The intention of the user informs 

the application and direction of the randomness, but not necessarily the end behavior of it. But 

the artist always has the option to disregard the influence of the uncertain, something the 

algorithm lacks in its limited behavioral agency. We look primarily not at ‘true randomness’ but 

rather controlled randomness, pseudo-randomness, feedback, and chaos in the mathematical 

sense. 
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Chapter 1 Introduction 

 

 One of the things that have most captured my attention and drew me towards 

technology as a focus is controlled randomness and unpredictability. It has been ingrained in my 

artistic and musical practice over the past ten years, providing a structural backbone that informs 

other elements. My focus has primarily been on modular synthesizers, although I’ve expanded 

and incorporated software such as Max/MSP. The idea of a give and take with a musical or 

artistic system where I, as the performer, have a hand in guiding the course of a piece, but 

without the certainty that comes from composing every single element, captivates me. A system 

organized around uncertainty, a machine with its own agenda, an electronic ghost who steers the 

course of a tangled mess of patch cables or software connections.  

 

In this thesis, I will explore different methods of generating controlled unpredictability 

from several angles. First, I dive into the history of modular synthesis and an overview of 

randomness in terms of theory and technology. Then I get into Eurorack modular synthesizer 

modules I designed and built, how they operate, and my design goals. After that, I move on to 

different ways of generating and analyzing randomness in software. Finally, I explore merging 

the worlds of hardware and software with custom-designed interfaces and practical applications 

for these concepts with both audio and video.  

 

I don’t focus primarily on ‘true randomness’ or completely uncorrelated systems of 

random values or numbers but rather on controlled randomness, pseudo-randomness, feedback 

systems, and chaos in the mathematical sense. Humans are pattern-seeking creatures. Our 

ancestors looked at the uncorrelated light shining from stars galaxies away and saw whole stories 

illuminated in the sky. Most music, and to a lesser extent visual art, is pattern-based. True 

randomness lacks some of the repetition that humans find so pleasing. Chaos and pseudo-

randomness tend to form patterns that our brains find pleasing and latch on to.  
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While chaos and randomness are often used interchangeably, there are a few 

fundamental differences between the two. Randomness has no underlying order, and the 

behavior of a truly random system is both non-deterministic and not influenced by previous 

states of the system that creates it. If I flip a coin ten times, regardless of how many heads or 

tails, the eleventh flip of the coin is not influenced by the previous ten. Chaos is mathematically 

deterministic but displays sensitive dependence on initial conditions as well as sensitivity to small 

perturbations to the system. This is well illustrated with a double pendulum. A pendulum 

consists of a weight hung from a pivot point so that it may move and swing freely. A double 

pendulum suspends a second weight from the bottom of the first pendulum, creating a second 

pivot point. If you have two double pendulums and release them from ever so slightly different 

positions, they will initially follow a similar trajectory. However, they begin to diverge in 

behavior rather quickly and will follow different paths through their swinging motions, as if they 

were dropped from wildly different initial positions. This is of course, until the forces of friction 

and gravity deplete the energy and they come together again at rest.  

 

Pseudo-randomness may appear random to observers, but the methods for generating 

the seemingly random string of numbers or values is fundamentally deterministic. After a period 

of time determined by the method of generating the pseudo-random signals, the string of 

seemingly uncorrelated values repeats. However, if this happens over a long enough period, you 

may not be consciously aware of it. For example, a 24-bit linear feedback shift register (LFSR) in 

a maximal configuration does not repeat for a period of 16,777,215 timing increments, much 

longer than the average person can keep track of. 

 

My road to this program started in 2015, when I purchased my first Eurorack module. I 

had been interested in electronics, starting in 2012 during the end of my undergraduate degree 

with early experiments in circuit bending and noise boxes. Circuit bending is a process of 

opening electronics, usually battery-powered toys or instruments, and making connections the 

designers never intended, usually in order to glitch, corrupt, distort, or otherwise make results 

that may be ‘unwanted’ in a commercial product. Pioneered by Reed Ghazala in the 1960s, 

circuit bending saw a great deal of attention in the early 2000s, with artists such as Casper 

Electronics, Gijs Gieskes, Get LoFi, Circuitbenders.co.uk, and many more creating circuit-bent 
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instruments for electronic music artists. Though it saw a bump in popularity during this time, 

many people who were involved in circuit bending began to move towards not just modifying 

other people’s electronics but making their own.  

 

This happened concurrently with the rise of Eurorack modular synthesizers in the early 

2010s. Eurorack is a modular synthesizer format popularized by the German company Doepfer 

in the 1990s that has become the most popular modular format, with hundreds of companies 

making synthesizers that are all compatible with each other, sharing a common form factor and 

power specifications. Many of these companies are just one or two people working out of their 

apartments or garages, which is how I run my company, omiindustriies. 

 

Due to the fact that a whole marketplace of modular synthesizers exists in the Eurorack 

format, companies don’t have to contend with making an entire synthesizer. This allows 

manufacturers, especially smaller ones, to make esoteric and specialized instruments. If a user 

can get a great-sounding oscillator from one company, then another company can make a 

distortion effect that uses an actual container of dirt without having to worry about making all 

the other parts of a synthesizer. This is where I entered the landscape of Eurorack as a small 

maker making unique and specialized instruments that fit very particular niches. I make them, 

first and foremost, for myself, and selling them is secondary.  

 

One of the unique things about the Eurorack marketplace is the willingness of the 

participants to help each other. Much of the community comes from the realm of DIY, or Do It 

Yourself, a practice of building, repairing, altering, or otherwise changing things without the aid 

of so-called professionals, professional credentials, or even training. Many designers or engineers 

freely put up their schematics, code, or even PCB layouts online. One company, Mutable 

Instruments, which by the time you’re reading this does not exist anymore, is one of the best-

known and best-selling manufacturers of Eurorack modules, headed by lead engineer Émilie 

Gillet. She made a conscious choice to make all the Mutable Instruments open source, to the 

point where an entire marketplace has emerged that either directly clone the modules or redesign 

the circuit board and front panel, so it takes up less space. I should note, of course, most 

companies follow these open-source practices. 
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The modules I examine are the Cascading Register and Ya Jerk, both of which were 

developed and realized during my time at CalArts after years of research. The Cascading Register 

uses what is called a shift register in order to generate pseudo-random voltages and binary 

signals, known as gates, typically used in a modular synthesizer as timing events. Ya Jerk is an 

implementation of a circuit researcher J.C. Sprott laid out in his paper “A New Chaotic Jerk 

Circuit,” with some modifications to make it more suited to musical applications, influenced by 

researcher and fellow Eurorack manufacturer Andrew Fitch, aka Nonlinear Circuits. These two 

modules provide two different ways of generating unpredictability, with the Cascading Register 

occupying the realm of pseudo-random and Ya Jerk sitting in the world of chaos.  

 

 Another focus of the methods explored is generating complexity from relatively simple 

building blocks. The Cases A-S equations, as defined by J.C. Sprott in his paper “Some Simple 

Chaotic Flows” and explored in the software section, boil down to three differential equations 

which define the X, Y, and Z parameters as they relate to each other over time. These equations 

consist of five terms and two quadratic non-linearities or six terms and one quadratic 

nonlinearity. A non-linear equation is a set of equations that share common variables but at least 

one of the equations includes a nonlinear element. Linear refers to a straight line with a constant 

change, whereas nonlinear functions change over time and bend or slope.  

  

The custom designed interface, known as Introductions, went through several iterations 

and continues to grow and evolve. Through all its forms, it boils down to a microcontroller 

connected to jacks and potentiometers that take analog voltages and gate signals and convert 

them into messages recognized by the computer, typically MIDI note on/off and CC messages. 

It acts as a bridge between a modular synthesizer and a computer, allowing the two to 

communicate. Most often when discussing an interface between a synthesizer and a computer, 

people refer to a way to send MIDI information out from a computer and into the synthesizer, 

but Introductions works the other way, allowing modulation and timing signals from a modular 

synthesizer to control software on the computer. 

 

Feedback refers to a self-influencing system that creates a loop by routing an output 

back into an input. Anyone who has had their microphone pick up their speakers on a Zoom 

call knows the screeching effect of feedback as the audio runs back in on itself, quickly building 
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to a piercing tone. However, feedback does not only exist in the realm of video conferencing but 

has many artistic applications. Creating a system that informs itself, particularly when containing 

elements of chance, provides a treasure trove of creative possibilities. Many of the techniques 

covered in the following pages require an amount of feedback in order to operate and may also 

operate as one element in a larger feedback system. 

 

Over the course of this thesis, I dive deep into these different techniques in order to 

examine a microcosm of the possibilities of unpredictable behavior as it relates to audio and 

video compositions. It is not intended to be an exhaustive overview of all the ways to generate 

chaos and pseudo-randomness but rather to document my process of exploration over my time 

at CalArts. This thesis seeks to provide context and analysis of these techniques generated 

through experiments in both hardware and software to introduce a broader understanding of 

stochastic processes, ones that can be studied for emergent patterns but not precisely predicted. 
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Chapter 2 

History and Context 

 

In 1895 Thaddeus Cahill submitted the first patent for “The Art of and Apparatus for 

Generating and Distributing Music Electrically,” for what we now know as the Telharmonium. 

Although there were some early experiments in electronic music instruments, the Telharmonium 

was arguably the first successful implementation of these concepts. Through electromagnetic 

synthesis methods, it could transmit music over telephone lines in Victorian America. The name 

comes from Telegraphic Harmony, hence Telharmonium. Concerts were not performed in 

person, but rather over telephone lines, allowing listeners to tune in at home or in public places 

equipped with telephones and loudspeakers.  

 

Cahill’s dream was to make a ‘universally perfect instrument that could perfectly 

synthesize tones with scientific accuracy’. He imagined that this instrument would make all 

acoustic instruments obsolete, as it contained elements from existing instruments without the 

defects he perceived were inherent to their design. 

  

Instead of simple waveforms, which one might expect from an early electronic 

instrument, the Telharmonium created complex harmonies from a series of sine waves generated 

by electrical dynamos. These dynamos, or tone wheels, included the fundamental tone and six 

ascending partials. The first version included 12 rotors spun at a speed determined by a belt-

driven motor and allowed for six octaves of range, covering the 12 chromatic notes of western 

tuning. Using organ-style stops, a performer could select which partials were heard, making the 

Telharmonium an early example of electronic additive synthesis. The pure sound generated by 

the rotors, particularly in the first version of the Telharmonium, was particularly harsh, and so 
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Cahill included filtering in the form of secondary inductors that softened the sound and made 

them sound more pure.  

 

There were three versions of the Telharmonium that Cahill made between 1895 and the 

final concert of the Telharmonium in 1912. All three versions were gigantic, occupying entire 

buildings in order to house all the parts necessary for the instrument. Unfortunately, the public’s 

interest in the novelty of the Telharmonium waned after their initial delight in the sound, and 

eventually, all three versions were sold for scrap parts. 

 

As the vacuum tube proliferated in the early 20th century, radio engineers began 

experimenting with different applications for them, and, quite by accident, discovered beat 

frequencies and heterodyning oscillators. When two radio frequency waveforms of similar but 

not identical frequency are played simultaneously, they combine and create a third frequency 

based on the difference between the oscillators. Several engineers found this idea to be 

inspirational, but none remembered as much as Russian engineer Lev Sergeivitch Termen, better 

known as Leon Theremin.  

  

One issue many engineers ran into with vacuum tube heterodyning synthesis was the 

human problem. Meaning that as a person came close enough to actually perform on a vacuum 

tube instrument, the capacitance of the body caused variations in the pitch of the oscillators, 

causing instability. However, Theremin found an opportunity in this limitation, realizing that this 

could be a way for a performer to interact with an instrument. Thus, the first Theremin was 

born in 1917, also known as the Aetherophone. The original design included a foot pedal to 

control the amplitude and a switch mechanism to control the pitch. However, by 1920, the 

Theremin began to resemble the instrument we recognize today.  

  

The Theremin includes an antenna and metal loop. The performer does not touch the 

theremin but controls the sound by moving their hands in the proximity of the instrument. The 

antenna controls the pitch of the sound, while the loop controls the amplitude or volume of the 

sound. The sound is reminiscent of a violin, both in the timbre and the continuous sliding 

between pitches that comes from moving your hand back and forth to control the sound.   
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The Theremin was first shown at the Moscow Industrial Fair in 1920 to astonished 

audiences. Vladimir Lenin was so infatuated with the Theremin that he requested lessons and 

eventually commissioned 600 Theremins to be built and toured around the USSR.  

  

In 1927, Leon Theremin left the Soviet Union for the United States. The Theremin 

received a patent in 1928. By the 1930s, RCA began selling both kits and finished instruments to 

the public. However, it was not seen by many as a serious instrument, but rather a novelty or 

sound effect device. However, anyone who has seen Clara Rockmore perform on a Theremin 

knows that it is a versatile and expressive instrument, although one needs a tremendous amount 

of skill in order to master it. 

 

 

Figure 1: Clara Rockmore Playing the Theremin 

 

Jumping forward a bit to the mid-1950s, RCA was a huge force in the world of 

electronic entertainment and technology. They produced everything from televisions to record 

players and oversaw the production of the Theremin in the United States. There was some 

interest in the company of analyzing the popular music of the time to figure out what made a 

song a hit. They thought if they could scientifically deduce the properties of popular songs, they 

could create a formula and crank out top 10 songs. They also wanted a way to circumvent the 

cost of unionized orchestras, so they sought out alternatives. RCA engineers Harry Olson and 
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Herbart Belar were tasked with this project, which would develop into a huge endeavor that 

would change the landscape of music and synthesis.  

  

The first programmable synthesizer was born from years of hard work and hundreds of 

thousands of dollars. It took up an entire room in Columbia/Princeton’s computer music center, 

known at the time as the Columbia-Princeton Electronic Music Center. The entire instrument 

was essentially an analog computer designed for musical purposes.  

  

Composers would punch holes in pieces of paper that the machine interpreted through a 

series of relays as instructions on pitch, amplitude, envelope, and timbre for each individual note 

in the composition. Each parameter had four columns of holes, making 16 possible values for 

each parameter. The paper moved through the device at 100mm/sec and allowed for 

compositions of up to 240BPM.  

  

The Mark II version of the synthesizer added several features, including doubling the 

number of oscillators from 12 to 24, high and low pass filters, noise, and glissando, which 

opened compositional freedom to many more possibilities. In addition to the punch card-

controlled parameters, over 250 manually controlled sound shaping parameters were available, 

grouped into clusters around the 10 19” racks that the instrument took up.  

 

 

Figure 2: Block Diagram of the RCA MKII 
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On both versions, the primary sound sources were vacuum tube oscillators that allowed 

for four voice polyphony over several octaves. It also included a dual-tier record cutting lathe, 

one with six cutting heads that could record two notes at a time. After recording on the first 

lathe, the second lathe would then mix down and cut a final record of the programmed sounds. 

However, by 1959, the impracticability of cutting individual records was replaced by a tape 

recorder. 

 

While the synthesizer was groundbreaking in a technical sense, it was not well received 

by the public at large or many practicing musicians. The interface was obtuse, the sounds 

simplistic, and was housed in a room in a university, unavailable to the general public. As the 

transistor and integrated circuits began to proliferate and take over the market of electronics, 

electronic devices, including synthesizers, could be made much smaller, cheaper, and more 

reliable. While the Mark II still exists, housed in a small room at Columbia’s computer music 

center, it has fallen into disuse. 

 

In the early 1960s, a young man in upstate New York was selling kits for theremins and 

tinkering with electronics. He would go on to become the name in synthesizers, even to this day. 

That man, of course, was Robert ‘Bob’ Moog. With a $200 grant from Columbia University in 

1963, Bob Moog collaborated with musician Herb Deutsch on the early design of what would 

become the Moog Synthesizer.  

  

The spark of genius in the Moog synthesizer was both the modular nature, where the 

reprogramming was done with patch cables, and the voltage-controlled nature of the synthesizer. 

Control voltage, or CV as it's commonly referred to, is a way of controlling modular synthesizers 

using electricity. This allows composers to automate different parameter changes over time 

without having to physically turn knobs. This can be the pitch, volume, or timbre of a sound, or 

any other parameter within the system. The other primary signal within a modular synthesizer is 

a gate signal. Gate signals only have two states, high or low, and are commonly used as timing 

signals. In a Moog synthesizer, this is commonly generated by pressing down on a key on a 

keyboard and then releasing it. This on/off signal could then be used to generate an event within 

the modular synthesizer.  
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One breakthrough of the Moog was the standard of one volt per octave scaling standard. 

What that translates to is that an increase of voltage of one volt translates to a doubling of 

frequency for an oscillator, which we know as an octave. This scale is exponential, as every 

octave is double the frequency as the previous octave.  

  

 

Figure 3: Early Version of the Moog Modular Synthesizer 

 

Deutsch was responsible for the design of the ADSR envelope generators on the Moog 

modular that shape sound over time. An ADSR envelope has controls for the time of an attack, 

which is the time it takes to go from the off position to all the way on, making the difference 

between the hard percussive hit of a drum or the slow build-up of a bowed sound such as a 

violin. Decay is the time it takes to fall down from that top-most point in the signal to a level set 

by the sustain. The envelope stays at the level set by the sustain control as long as a signal is 

active or until a key is let go, and then the release parameter sets the time it takes for the 

envelope to fade away completely. 

  

Moog was able to patent only one part of his Moog modular, the filter, which is the most 

recognizable part of the Moog modular. I’m sure you have heard the sound of a filter sweep; 

that characteristic “waaahhh” sound of an analog filter being swept is iconic in many different 

forms of music. 
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Around the same time, on the other side of the country, the members of the San 

Francisco Tape Music Center were looking for new ways to generate sounds for their 

compositions. Started by Morton Subotnik and Ramon Sender, the Tape Music Center included 

composers such as Pauline Oliveros, Steve Reich, and Terry Reilly. Subotnik put out an ad 

looking for an engineer who could design new ways of synthesizing sound, moving away from 

the large industrial laboratory equipment found in electronic music studios such as WDR Studio 

in Köln, Germany, and GRM in Paris, France.  

  

Don Buchla, a former NASA engineer, took Subotnik up on this project. With a $500 

grant from the Rockefeller Foundation, he sent about designing what would become to be 

known as the 100 Series Buchla system, although also sometimes referred to as the Buchla Box 

or the Electronic Music Box. While Moog made modular synthesizers that sought to synthesize 

sounds reminiscent of acoustic instruments and included a black and white organ-style keyboard, 

Buchla wanted to create a new paradigm for creating electronic music. The Buchla system 

utilized sequencers, randomness, and tunable touch plates in order to create synthesized sounds. 

Moog used filters to subtract harmonics from harmonically rich waveforms such as sawtooth 

and pulse, known as subtractive synthesis. Buchla, on the other hand, used additive synthesis, 

taking harmonically simple waveforms such as sine and triangle and adding harmonics through 

frequency modulation, wave folding, and audio rate amplitude modulation, commonly referred 

to as ring modulation.  

 

Another major difference between Buchla and Moog was the separation of signals. In 

Moog and many other modular systems, all signals were treated the same, occupying the same 

range of voltages and using a single connection. Buchla, on the other hand, separated the 

modulation and audio signals in the system. Audio signals used tini-jax, a shielded cable similar 

to 3.5mm/1/8th cables found on your wired headphones and were referred to as Performance 

Modules. Modulation sources, referred to as Compositional Modules, used banana cables, which 

included the added bonus of being able to be stacked, allowing one signal to be sent to multiple 

destinations without using a specialized splitter module. While Moog and many other synthesizer 

makers used a 1V/oct standard, Buchla instead implemented a 1.2V/oct, making a change of 

0.1V correspond to a semi-tone. 
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Buchla’s first forays into randomness came in the form of the Model 160 and Model 165 

modules released in the 100 Series. The Model 160 was a noise generator with two pairs of 

outputs. One pair output white noise, marked as flat, and the other pair output pink noise, 

marked 1/F. White noise is named as such because it has equal power throughout the spectrum 

of its bandwidth, containing a series of random phases, amplitudes, and frequencies within the 

bounds of the signal. It was thought of as akin to white light which contains all other colors. 

Other kinds of noise took the naming convention of kinds of light and their energy and while 

the metaphor doesn’t exactly work, it is an easy shorthand for describing kinds of noise. Pink 

noise does not have equal power density through its spectrum, but if examined on a 

spectrogram, slopes downward at a rate proportional to the frequency of the noise. It is 

sometimes called musically flat noise since the energy contained in each octave interval is the 

same. The energy contained in the interval between 100 and 200Hz is the same as the interval 

between 1000 and 2000Hz. The rate at which pink noise’s energy loss slopes is -3dB/octave. 

Pink noise is generally regarded as more pleasant to listen to than white noise, as white noise is 

perceived to have more high frequency content due to the way human hearing works. Many 

devices sold as white noise machines actually produce pink noise. 

 

Figure 4: Buchla Model 165 
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The Buchla Model 165 was a two-channel random voltage generator that produced a 

pair of uncorrelated random voltages whenever it received a timing signal.  It is a self-contained 

device with no user-accessible controls or any way to affect the output besides processing it with 

another module later down the patch chain. These random voltages were stepped and not free 

running, only generated or changed when the module received a timing signal. It used relays, 

which function both to produce the stepped voltages from a noise signal, such as white noise, 

and let you know when it receives a timing signal as the movement of the electro-mechanical 

switches gives off an audible click when it engages. These relays were used to create a simple 

sample and hold circuit.  

 

A sample and hold is a device that is typically used to turn a continuous signal into a 

discretely stepped signal. It has a timing input and a sampling input; when it receives a timing 

signal, the sample and hold looks at the signal present at the sampling input and stores that 

voltage level. It takes that stored voltage and passes it to the output, where it is held until the 

sample and hold receives another timing signal. At this point, it looks at the sampling input 

again, moves that voltage level into the sample and hold buffer, and the old voltage level is lost. 

Typically, the voltage source on a sample and hold is noise, usually white noise, which gives a 

random collection of uncorrelated values at the output, useful for true random sequencing. It is 

the most common way of generating randomness in hardware as it fairly simple to implement 

and produces continuous randomness. While that is useful for many contexts in synthesis, true 

randomness is outside the scope of this thesis.  

 

The models 160 and 165 were fairly simplistic, due to the fact that this was the mid-

1960s. None of the early Buchla designs used integrated circuits, known colloquially as chips, as 

they were not in widespread use at the time. In lieu of that, all designs were fully discrete, 

meaning they were composed of basic electronic components such as transistors, resistors, 

capacitors, and diodes. Buchla was also charting unknown waters, producing a whole new 

paradigm of generating electronic music and art, and early works in any new field seem lacking 

and basic when looking back with hindsight. However, Don Buchla was not satisfied with the 

original 100 series, and through the 1960s into the 1970s worked on a new collection of 

modules, known as the 200 series. The 200 series would take the lessons learned from the 100 
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series, both from an engineering and musical point of view, and expand on their functionality, 

control, interaction, and reliability.  

 

While there are many aspects of the 200 Series that could be explored deeply in their 

own right, I’ll be looking specifically at two modules, the 265 and the 266, both named Source of 

Uncertainty. The Model 265 was the first iteration, followed by the 266.  

 

 

Figure 5: Buchla Model 265 

 

The 265 contained three sections; noise, random voltage outputs, and stored random 

voltage outputs. Noise comes in three varieties, low, high, and flat. A fourth iteration of audio 

noise used in the module that does not have a direct output is a so-called ‘noisy triangle’ 

waveform. This is a 100Hz triangle oscillator that is synchronized to white noise in order to 

produce an equal distribution of random signals. This noisy triangle is used in both sections of 

the random modulation. The random voltage outputs, which would come to be known as 

fluctuating random voltages, output a constantly changing random voltage whose period is 
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determined by the Probable Rate of Change controls which vary the speed from 0.5Hz to 50Hz. 

Each channel outputs a pair of signals and includes CV modulation over the rate of change.  

 

The Stored Random Voltage section retained the timing signal input and pair of distinct 

outputs seen on the Model 165, but added a unique feature, marked Correlation on the front 

panel. The correlation control is simple in its design, basically just a cross fader that fades 

between the incoming noisy triangle and the output of the random voltage fed back into itself. 

This allows users to sculpt the direction of the chaos to make it more or less related to the 

system’s previous state. Turned all the way up, the output is always the same as it just samples 

itself. Turned all the way down, the output constantly changes based on the noisy triangle. The 

sweet spots are in the middle, where the module influences itself but includes new information 

to generate the random outputs.  

 

While the 265 is a powerful source of unpredictability, the 266 is the better-known 

Source of Uncertainty. It retains the three pairs of noise outputs and the fluctuating random 

voltages from the 265 but adds several other function blocks. These are Quantized Random 

Voltages, an Integrator, Sample and Hold, and a new version of Stored Random Voltages, which 

shares the name from the 265 but is implemented in a completely different fashion.  

 

Figure 6: Buchla Model 266 
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The Stored Random Voltage section has a timing input and a probability CV input with 

a pair of outputs. The outputs each have different probabilities of outputting a random value. 

The top output produces signals that include an equal probability of output level. The 

probability distribution for the bottom output is determined by the probability control and CV 

input, favoring high, mid-range, or low values. This allows users to set the range of random 

values generated by the module and therefore the amount of change that output contributes to 

another module. The CV input allows the probabilistic distribution to be varied by an external 

source, or even another signal from within the 266 itself if patched that way.  

 

The Quantized Random Voltage section also includes a timing input and CV input over 

the quantization level with a pair of related but separate outputs. These are marked 2^n and 

n+1, which correspond to their distribution of random voltages. If the control is at 1, then n = 1 

and both the n+1 and 2^n produce two possible values. 1+1 and 2^1 both equal two. If n= 3, 

then n+1 outputs one of four possible values (3+1), while 2^n outputs eight possible values, 2^3 

= 8. N+1 scales linearly, while 2^n scales exponentially. The n+1 output tends to favor the 

values in the center of the probability distribution, while the 2^n has equal weighting across the 

distribution. Both sections use what are called shift registers to generate their random, or 

pseudo-random, signals. I’ll be going deeper into what a shift register is in the section dealing 

with hardware implementations of pseudo-randomness. The 266 also includes an integrator and 

sample and hold section. The sample and hold section creates a stepped voltage based on an 

input signal and timing signal and the integrator smooths out incoming voltages.  

 

An unconfirmed urban legend surrounds several red-paneled Buchla modules, that said 

that the paint of these modules contained LSD. Rubbing your finger along them and licking it 

was thought to give users an extra boost of creativity. Whether or not this synthesizer folklore is 

accurate is up for debate, but it lends to the air of chaos that surrounds Don Buchla’s legacy.  

 

In the 1970s, CalArts had several Buchla systems in their studios, but few had access. A 

professor at the time, Serge Tcherepnin, wanted to create a more accessible brand of synthesizer 

that retained the experimental nature of Buchla synthesizers. Tcherepnin and students Rich 
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Gold and Randy Cohen eventually set out on a goal to make their own synthesizer. The first 

Serge systems, as they would be known, were designed and soldered at a kitchen table in 

Tcherepnin’s home. Although it started small, word eventually got out to CalArts faculty and 

students, as well as other musicians. They set up a pseudo factory on campus, and for the fee of 

$700, you got all the parts necessary to build a six-panel system, all put together on-site, 

assembly line style. 

 

 

Figure 7: An early ‘Paperface’ Serge at CalArts 

 

The Serge paradigm breaks down the parts of synthesis into their barest elements. All 

connections are made via banana cables, with a color coating of the jacks to indicate if the signal 

is AC, DC, or a timing pulse. Serge modules often use technical terms to explain musical 

concepts, which may be daunting to some musicians, but often the constituent elements are 

relatively simple. Serge’s function generator, known as the Dual Universal Slope Generator 

(DUSG), is one of the best-recognized parts. On a Moog system, you have an ADSR envelope 

generator and on a Buchla, you have the Quad Function generator, both of which strictly 

generate envelopes, usually used for varying amplitude or timbre. The DUSG, on the other 

hand, can be used to generate envelopes, but can also be used as a slew generator to add 
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portamento, add delay to a pulse signal, follow the amplitude of an audio signal, cycles like an 

LFO or audio oscillator, or even be used as a simple non-resonant low pass filter.  

  

Serge also pioneered the concept of patch programming. Patch programming uses one 

of the outputs from a module patched directly to one of the inputs on the same module in order 

to change the functionality. This could be making a function generator oscillate or turning a 16-

step sequencer into a 13-step sequencer. 

  

The two modules that are most used for generating randomness within a Serge system 

are the Noise Source and the Smooth and Stepped Generator, known as the SSG. The Noise 

Source outputs white and pink noise, plus another noise source called S/H Source that is 

inspired by the noisy triangle found on the Buchla 265. Some iterations of the Noise Source also 

include a stepped random output generated by either an external timing signal or with an 

onboard button.  

 

 

Figure 8: Paperface Serge Smooth and Stepped Generator and Noise Source 
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The SSG is broken down into three sections, Smooth, Stepped, and Coupler. The 

Smooth section smooths out incoming signals at a rate set by a control, turning stepped signals 

into smoothly varying signals. The Smooth section uses what is known as a track and hold. A 

track and hold is almost the opposite of a sample and hold. Instead of only allowing signals to 

pass to the output at clearly defined stepped intervals, a track and hold lets a signal present at its 

input to pass freely to the output. That is until the track and hold receives a timing signal, at 

which point it holds the level of the signal passing through it and does not let any signal through 

until the timing signal goes inactive. 

 

The Stepped section also includes a slew generator to smooth out signals but uses a 

timing signal to generate a stepped signal based on an input signal using a sample and hold. Both 

sections include cycle gate outputs, which, when patched into their respective inputs, allow the 

sections to oscillate and be used for modulation or an audio source. The third section is the 

coupler output which compares the signals present at the smooth and stepped side and outputs a 

high signal when the stepped side is at a higher voltage level than the smooth side.  

 

An SSG cannot be used on its own as a source of randomness, but it is a great way to 

expand the functionality of the Noise Source. The Serge Fans website includes the following 

suggestion on how to patch up a complex source of random modulation: Patch the S/H noise 

signal into the in input on the stepped side, patch the coupler out to the timing input on the 

stepped side and the in input on the smooth side. This creates stepped random voltages, smooth 

random voltages, and random timing signals. Varying the controls of the smooth and stepped 

sides affects the amplitude and timing of the random signals. There also exists a module that 

does that already, known as the Random Voltage Generator, which outputs stepped, smooth, 

and timing signals. If you opened your case and took a look at the circuitry behind the front 

panel, you would notice that the RVG actually uses an SSG PCB, prewiring that common patch-

programmed configuration.  

 

The rise of low-cost digital synthesizers in the 1980s led to many musicians casting off 

their analog synthesizers in favor of the newer, more reliable all-in-one keyboard synthesizers. 

Analog was seen as a thing of the past, a curiosity or steppingstone to the next iteration of 

technology. However, in the mid-1990s, a German company named Doepfer had the idea of a 
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new modular format, which came to be known as Eurorack. Eurorack refers to a standardization 

that defines the size of the front panels, 3U or three rack units high, 128.5mm or just over five 

inches. It also specifies the power requirements, both in terms of what voltages the power 

supply generates and the connections from the power supply to the individual modules. The 

connections between the modules are made on 3.5mm/ 1/8th inch monophonic cables, similar 

to the ones seen on headphones, but only carrying a single signal instead of a dual/stereo one.  

 

Since the mid-90s, Eurorack has become the dominant modular format, with well over 

100 companies of various sizes making and selling their own synthesizer modules. With the wide 

range of available modules, there is bound to be variation on existing paradigms and new ways 

of synthesizing and modifying sounds.  

 

Two modules that take direct or indirect inspiration from the Buchla 265/266 Sources of 

Uncertainty are the Doepfer A-149-1 and the Wogglebug, originally made by Wiard with 

versions from Make Noise, Erica Synths, After Later Audio, and others. The Doepfer  A-149-1 

can be seen as a direct link to the Buchla 266, stripping it down to its Stored and Quantized 

random voltages. It adds controls to vary the amplitude of incoming CV for the N and 

distribution for the Quantized and Stored random voltages, but otherwise is near identical, even 

retaining the same panel graphics seen on the original Buchla module. It also has an optional 

expander, which adds eight gate outputs based on the state of signals within the Quantized 

Random Voltage section.  
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Figure 9: Doepfer A-149 

 

The Wogglebug was originally designed by Grant Richter of Wiard Synthesizers. It could 

be seen as a continuation of the ideas laid out in the 265 Source of Uncertainty. It includes the 

fluctuating smooth and stored stepped CV outputs, complete with correlation control, but adds 

a third unique smoothed output, known as the woggle CV. This CV signal follows the smooth 

random voltage and when it catches up to it, it bounces around that CV level with decaying 

sinusoidal wiggles and woggles. The Wogglebug features an internal clock and clock input to 

synchronize all outputs to a common timing signal. In addition to providing modulation, it also 

includes audio-rate oscillators connected to the random CV with outputs for the Smooth VCO, 

Woggle VCO, and the result of ring modulating the two VCOs against each other.  
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Figure 10: Make Noise Wogglebug 

 

In 2012, Music Thing Modular released the Turing Machine as a DIY project. While it 

shares the name Turing from the pioneering researcher in computer science, Alan Turing, it is 

not a true Turing Machine in the way Turing described it. Rather, it’s a random sequencer that 

allows users to guide the direction of the randomness without being able to control exactly what 

notes are played. One unique feature that has attracted many users is the large knob that adorns 

the front panel, which allows you to interact with the randomness. By varying the position of the 

knob, you can allow the module to introduce more or less randomness into the sequence, even 

to the point where no new information is passed into the data buffer, and it repeats indefinitely. 

This could be seen as harkening back to the correlation control on the 265 but implemented 

differently. The length of the sequence is user definable between 16 and 2 steps long. Several 

expanders are available, which add additional modulation outputs, timing signals based on the 

state of the random sequence, or a simple matrix mixer hooked up to the output of the random 

voltages.  
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Figure 11: Music Thing Modular Turing Machine 

 

Marbles from Mutable Instruments is a powerhouse of random timing and modulation 

signals. It has three main sections; T, X, and Déjà vu. The T section controls the timing of the 

module, generating three timing signals with variable rate and jitter, or the amount of 

randomness in the clock timing. T2 is the steady clock signal set by the rate knob, while T1 and 

T3 are controlled by a Bias knob. Bias has three modes: coin toss, random ratio, and kick/snare; 

in all of these modes, the Bias controls the likelihood of the chance operation to affect T1 or T3. 

The X section is a collection of modulation signals with variable range, probability distribution, 

distribution bias, smoothness or steppiness, and quantization to a musical scale. Both the T and 

X sections are connected to the Déjà vu section, which allows users to recycle the random data 

within the module for looping behavior.  
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Figure 12: Mutable Instruments Marbles 

 

Nonlinear Circuits is an Australian-based modular synthesizer company run by Andrew 

Fitch. Fitch has had a prolific career putting out strange and esoteric modules with personality 

baked into their front panel and PCB silkscreens. Modules have names such as Poultry in 

Motion, Bindubba, and Brain Custard, and while some fall into standard synthesis categories, 

many exist outside of traditional behavior seen in synthesis. Fitch’s output has been prolific, 

releasing a new design every month or two and running a periodic DIY synthesis workshop in 

Perth. Much of the NLC output comes in the form of unique chaotic and random modules 

which have been a large inspiration in terms of my own designs. We’ll explore the direct 

inspiration from his work to mine in the hardware chapter.  
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Figure 13: Nonlinear Circuits Brain Custard 

 

Chaos 

In the beginning, there was nothing. At least that’s how the story goes for many creation myths. 

Chaos was seen as the prehistory of the world, a formless mass of nothingness that predated 

humans or even gods. In Ovid’s Metamorphoses, the chapter on The Creation begins: 

 

Before the ocean and the earth appeared— 

before the skies had overspread them all— 

the face of Nature in a vast expanse 

was naught but Chaos uniformly waste. 

It was a rude and undeveloped mass, 

that nothing made except a ponderous weight; 

and all discordant elements confused, 

were there congested in a shapeless heap. 
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Some god force, or nature, personified with he/him pronouns, took this formless state 

of the universe and gave it direction and a recognizable form. This conception of chaos 

seemingly influenced the Christian creation myth as well, as before the earth existed, there was a 

formless void or abyss. The disorder of emptiness stands in contrast to the divine orderliness of 

creation.  

 

Chaos is often used as shorthand for disorder and confusion, something antithetical to 

the rigors of science and mathematics. However, in the middle of the 20th century, researchers 

began to apply the term to an emerging realm of thought that touched the realms of physics, 

mathematics, and even the life sciences. Chaos theory can broadly be seen as studying the 

seemingly random or unpredictable using deterministic rules. Its evangelists came from a diverse 

range of fields but were all drawn in by the allure of the unknown.  

 

One of the major researchers in the field was a man named Edward Lorenz, a 

mathematician and meteorologist. In the 1960s, he was working at MIT, trying to figure out a 

way to predict weather patterns. To many meteorologists, the idea of forecasting the weather 

was not a realm of serious consideration, it was pure fantasy and conjuncture. The idea of a 

system that could predict weather patterns had been a tantalizing pipe dream, something not 

worth considering or spending time pondering. However, Lorenz was not one of these nay-

saying scientists.  

 

Lorenz had constructed a crude weather simulation using a Royal McBee LGP-30 

computer. It was a primitive thing, able to perform about 60 calculations a second, but it was 

what was available at the time. He sketched out 12 rules to govern his hypothetical weather 

system that determined the relationship between temperature and pressure, and then pressure 

and windspeed. Every few minutes, the machine would print out a row of numbers, an 

incredibly abstracted version of a day’s weather and winds. If you could decode this numeric 

code, you could see the behavior of weather emerge, but never quite the same way twice.  

 

Lorenz would eventually change the way the machine represented its findings. He picked 

a variable and represented it by the letter ‘a’ with a certain number of spaces on either side. The 

machine would print a series of ‘a’s to chart the changes of that parameter over time, moving 
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back and forth across the printout.  Up and down the ‘a’s marched, plotting information that 

corresponded to some variable such as wind direction. There was an order to the seeming 

disorder of it, recognizable patterns that didn’t even quite repeat.  

 

In 1961, he wanted to get a better look at a particular behavior, so instead of starting the 

simulation over from scratch, he started partway through. He typed the initial conditions of the 

system by hand, and let the machine run unattended while he did something else in the office. 

When he returned, he had a shocking discovery. The machine had not repeated the behavior he 

saw beforehand but had an entirely new printout that deviated from the first. Slowly at first, but 

as it progressed, the discrepancy grew and grew. He first thought something had malfunctioned 

with his computer, as it often did, but he realized where the discrepancy came from.  

 

The printout showing the numbers only printed the first three decimal places, but the 

computer stored six decimal places in its memory. He had typed 0.506 instead of the 0.506127 

stored in memory. This tiny deviation and its resulting behavior became known as one of the 

fundamental aspects of chaos theory: sensitive dependence on initial conditions. The machine 

was governed by deterministic rules, but small changes to the parameters led to great changes as 

the system progressed. Lorenz saw a delicate order in his unpredictability, a complex system that 

was nevertheless governed by specific laws.  

 

Chaos theory is sometimes mentioned together with the Butterfly Effect. The butterfly 

effect uses the metaphor that the simple flap of a butterfly’s wings in a remote location then 

disturbs the weather and causes a tornado halfway across the world weeks later. This is the best-

known analogy of sensitive dependence on initial conditions.  

 

Lorenz decided to keep pursuing complexity that arises out of a simplistic set of rules, 

and eventually settled on a system of just three nonlinear equations. Rather than linear equations 

that can be solved and plotted as a straight line on a graph, nonlinear equations are not 

proportional and curved when graphed, if they can be solved at all. Only nonlinear equations can 

be chaotic, but not all nonlinear equations are chaotic. Lorenz took a series of equations that 

described convection, or the rising of a hot liquid or gas, and stripped them down to their barest 



 30 

elements so they no longer applied to real world conditions of convection. He kept the 

nonlinearity, of course, but threw out much of the other elements that made up the equations.  

 

Plotting the three equations in three-dimensional space creates what is called the Lorenz 

Attractor. Fittingly, it almost appears to trace the shape of a butterfly’s wings as it rotates around 

a bounded space never quite the same way twice. Lorenz documented his findings in a paper 

entitled “Deterministic Nonperiodic Flow,” which researchers would cite with excitement for 

years to come. The attractor was chaotic but not unstable. Noise or other perturbations would 

not throw it off its long-term trajectory. The system was stable in the long term and when 

viewed holistically, but any one point or on a microscale was unpredictable.  

 

 

Figure 14: Lorenz Attractor 
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A surprising place where chaos shows up is in an equation that models population 

growth, known as the Logistic Map. Using a simple equation, biologists could map the rate of 

change in a population of animals over time. The simplest way to calculate the change in 

population is to take this year’s population, symbolized by the variable ‘n’ in this case, and then 

multiply by a growth rate, ‘r’. Let’s say you start with a population of deer, n = 10, and a growth 

rate of r=2. x(next) = n * r, or next year’s population is equal to this year’s population times the 

growth rate. Then you repeat, so x is equal to the previous year’s x(next). The first year you 

would have 10 deer, in year two you would have 20 deer, in year three, 40 deer, etc. Obviously, 

this runs away quickly, doubling in size every year without any consideration for death by disease 

or predation. The feedback loop is infinite, last year’s population becomes next year’s at a rate 

with no decrease in population. 

 

You need to reign in the numbers and account for mortality, and a simple change in the 

equation does that. The new equation is x(next) = r*x(1-x), with the addition of (1-x) setting a 

boundary to the growth. As x rises, (1-x) falls. With a growth rate under 1, the population 

declines to extinction as it decreases every year. With an r growth rate between 1 and 3, the 

population stabilizes, no runaway growth or decline. However, once r goes above 3, the 

population begins to oscillate between two points, reaching a different kind of stability. This is 

known as period double bifurcations, meaning it takes twice as long to repeat a value. As you 

increase further, the population splits again into a four-year cycle, then eight, and then 16. 

Eventually, when r is greater than r=3.57, the doublings give way to chaos. However, the chaos 

does not exist at all r values over 3.57, as r approaches 3.83, there are three-period cycles, then 

six, then 12, and then back to chaos again. In fact, hidden in the logistic map are periods of 

every length. Hidden in the chaotic nonperiodic oscillations of the logistic map are islands of 

order, small windows where the unpredictable gives way to the stable.  

 

It should be noted that this way of calculating growth is a different type of equation than 

the Lorenz attractor. The Lorenz attractor and equations like it are differential equations that 

happen continuously over time, while the Logistic Map is a difference equation, with clearly 

defined intervals. Like the difference between a smoothly moving second hand on a watch and 

the minute hand that jerks forward a set interval every full rotation of the second hand. This 
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works nicely when charting population growth in animals, as many animals have a distinct 

breeding season and populations can be charted in yearly intervals.  

 

In 1998, Dan Slater published a chapter in the Computer Music Journal entitled Chaotic 

Sound Synthesis. This was one of the first instances of bringing the worlds of chaos theory and 

modular synthesis in a formalized manner. Many early researchers in chaos theory used analog 

computers in order to study chaos. In contrast to the much more popular digital computer, 

analog computers have the capability to calculate continuous signals, whereas digital computers 

store values as discrete and set binary intervals. Mathematical equations could be constructed 

from operational amplifiers and common components such as resistors and capacitors. 

However, due to the nature of physical parts, there are potential issues in small variations in the 

characteristics of the materials making the parts. This is part of the reason that digital computers 

have become the ubiquitous machine of the end of the 20th century into the 21st century.  

 

One thing that attracted the attention of the authors of Chaotic Sound Synthesis is the 

ability to interface many analog computers with hardware modular synthesizers. Many 

computers output analog signals in the +/-10V range and are compatible with Buchla, Serge, or 

Moog modular synthesizers. By programming analog computers, you can get any number of 

behaviors, from simply scaling a voltage to complex chaotic equations not available in modular 

synthesizers at the time.  

 

One application was the construction of nonlinear filters that produce chaotic behavior. 

These filters are sensitive to an incoming signal’s amplitude and waveform, not just its 

frequency. Additionally, the nonlinear chaotic filters may produce frequencies not present in the 

input signal. One chaotic system like a state variable filter is the Ueda attractor. The Ueda 

attractor can be constructed out of a modified state variable filter where one of the inverting 

stages is swapped for a circuit that produces an x^3 function.  

 

While an analog computer can be included with a modular synthesizer in order to 

calculate chaotic behavior, common synthesis elements in a modular synthesizer can also be 

used to generate chaotic behavior. One example of this is an analog implementation of the 
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logistic map discussed above. The author of the paper reordered the logistic map from x(next) = 

r*x(1-x) to x(n+1) = k(xn - x^2n). 

 

The implementation of the logistic map was created using several Moog Modular 

modules, the 902 VCA and the 928 Sample and Hold. The 902 VCA is a voltage-controlled 

amplifier with both linear and exponential response curves. A voltage-controlled amplifier can 

be compared to automated volume control. Instead of manually turning up and down the 

volume for a signal, a second signal can be used to automate the amplitude or volume level of 

that signal. The 902 includes two inputs that are differential, where the signal present at the 

lower jack is subtracted from the signal at the upper jack. When only using one input signal, the 

two inputs correspond to inverting and noninverting behavior. Two 902s are used to generate 

the x^2 term, while a third generates the k(x-x^2) term. The k or chaos level is controlled by the 

CV input on the third VCA. All the VCAs are set to respond linearly to incoming voltages.  

 

 

Figure 15: Method for Generating a Logistic Map with Moog Modular Synthesizers 
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The inverted output from the third VCA is patched to the Moog 928 Sample and Hold 

into the x1 input. The 928 provides a single-sample delay with a sampling rate set by the internal 

clock oscillator. The x3 amplified output from the 928 is fed back into the VCAs. Adjusting the 

slewing on the 928 alters the discretely time-stepped nature of the logistic map where instead of 

jumping from one year or time interval to the next, it bleeds the intervals together. It’s not a 

one-to-one recreation of the logistic map, but it probably makes for some interesting results.  

  

With these considerations in mind, Slater proposes a hypothetical chaos module in the 

Buchla 200 series format. The module includes a Poincaré control voltage processor, Ueda 

attractor audio processor, and a pair of Logistic equation circuits, one for audio and one for 

control voltages. The Ueda audio processor blurs the line between chaos module, audio filter, 

and quadrature oscillator. A quadrature oscillator is an oscillator that generates two or more 

outputs that sit out of phase with each other, usually 90 degrees. This is commonly implemented 

with sine and cosine outputs. The attractor includes CV inputs to modulate the frequency, Q (a 

shorthand for resonance, but labeled here as damping), and nonlinearity with a control for 

exponent that ranges from 1-4. It includes lowpass, highpass, bandpass, and band-reject filter 

outputs, with the lowpass and bandpass outputs sitting 90 degrees out of phase with each other, 

acting as quadrature outputs.  
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Figure 16: Dan Slater's Hypothetical Chaos Module in the Buchla Format 

 

The Poincaré map takes two audio signals, by default the quadrature out of phase 

bandpass and lowpass filters from the Ueda filter and generates a short pulse when the audio 

signal transitions from negative to positive. This drives two sample and hold circuits with the 

reference voltage coming from the input signal present at the Ueda filter. If only using a single 

chaotic input signal, the Slater suggests an allpass filter, delay network, or dome filter in order to 

generate a second chaotic signal, derived from the first. The Poincaré map would in this case be 

used to generate the X and Y positions of a chaotic signal as they relate to phase space, which 

could be easily viewed if used with an oscilloscope in XY mode. When running an oscilloscope 

in XY mode, the oscilloscope takes two of its inputs and maps them onto a 2D space, with one 

input corresponding to the horizontal axis and the other the vertical axis.  

 

The pair of Logistic Map Circuits act as nonlinear waveshapers for both audio and 

control voltage signals. When passing audio signals to the circuits, it generates outputs varying 

from pulse waves to different subharmonic and chaotic noise signals. It does the same thing to 

control voltages, but on a sub-audio level. The outputs would be stepped and not smooth, 

because, as we’ve seen, the Logistic map operates in discrete time-stepped intervals.  
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Dan Slater laments the fact that chaos theory, as a formalized concept, had not been 

fully explored during the major heyday of modular synthesis development from the mid-1960s 

to the early 1980s. While there is some overlap in the timelines, the idea of bringing the two 

together was seemingly not on the minds of the early developers of modular synthesis. The 

paper “Chaotic Sound Synthesis” was published in 1998, right around the time that Doepfer was 

introducing their iconic Doepfer A-100 series Eurorack modular synthesis format. As I’ve 

mentioned, the proliferation of this ubiquitous style opened the marketplace for radical 

experimentation in synthesis techniques, including chaos. In the next chapter, I detail my 

explorations in creating modular synthesizers that occupy the realm of chaos and pseudo-

randomness.  
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Chapter 3 Hardware 

 

I first released a hardware synthesizer in the spring of 2018, but that was after several 

years of planning, research, trial, and plenty of error. The first module released was the Dual 

Digital Shift Register, a simple shift register-based module that generates pseudo-random signals 

after beginning work in 2016. In 2019, I released Illyana, a two-channel Boolean logic module. 

Over the next few years, I went on to release the R2Rawr, lo-fi digital to analog converter; 

Curtail, an audio to video level shifter; and the Quad Mute, a four-channel passive mute switch. I 

also developed several modules that have not been released but have stayed in the prototyping 

phase until I deem them ready for release.  

 

When I enrolled in CalArts in 2021, I was in the middle of development of one of those 

modules that I had been working on for almost two years at that point, and just figured out I 

needed to do a massive revision to the design to make it both more stable and more chaotic. I 

decided I needed a break, and my mind wandered to the design that would become the 

Cascading Register.  

 

The Cascading Register generates pseudo-random voltages and gates using what is called 

a shift register. It was inspired by several different kinds of shift register implementations found 

in both within modular synthesis and outside of modular synthesis. These are digital shift 

registers, analog shift registers, linear feedback shift registers (LFSR), and runglers (a specialized 

esoteric shift register implementation). It grew and evolved from the first Eurorack module I 

designed to completion, the Dual Digital Shift Register (DDSR).  
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Figure 17: omiindustriies Cascading Register 

 

A shift register is a series of simple data storage elements, known as flip-flops, connected 

sequentially, which share a common clock or timing information. Typically, shift registers are 

digital, meaning that the information they store occupies two states, off or on, 0 or 1, high or 

low. A flip-flop is a simple data storage device that stores the state of an external data source, 

typically binary on/off information. I’ll be talking about a serial-in-parallel-out shift register, but 

there are several other implementations of the basic shift register concept. For simplicity’s sake, 

I’ll just call the SIPO shift register a shift register.  

 

A shift register has a data input connected to the first flip-flop and a clock input 

connected to every flip-flop in the chain. On the rising edge of a clock pulse, the shift register 

looks at the data input and moves that state into the first stage of the shift register. If the data 

input is high, it moves a high state into the first stage, and if it’s low it moves a low state into the 

first stage. Concurrently, whatever data was in the first flip-flop gets shifted to the second stage, 
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whatever was in the second stage moves to the third, and so on. When a bit of information 

reaches the final stage of the shift register, it is shifted out and lost. This is the basic function of 

a digital shift register.  

 

A rungler is a particular implementation of a shift register, designed and invented by 

Dutch engineer Rob Hordijk. He wanted to make a module that created unpredictable signals 

but was disillusioned with just simple noise generators. In the 1980s, he experimented with 

CMOS (complementary metal-oxide-semiconductor) circuits, a family of digital logic circuits. A 

rungler circuit is a particular implementation of a shift register, coupled with a pair of oscillators. 

One oscillator provides the clock information and the other is the data source. The last three 

bits of the eight-bit shift register are fed into a DAC circuit to create a waveform that Hordijk 

describes as a “Stepped Havoc Wave.” Hordijk was inspired by Dutch composer Jan Boerman, 

who described all sound as appearing on the continuum between a pure sine wave that contains 

only the fundamental frequency and no harmonics, and pure noise, which contains every 

frequency, amplitude, and phase relationship of sound; even going so far as to say that all sound 

is contained in the static hiss of pure uncorrelated noise.  

 

The rungler’s stepped havoc wave is routed to modulate the frequency of both the clock 

and data oscillators to create a feedback loop. The clock and data oscillators also include triangle 

wave outputs, which in addition to the stepped havoc wave, is routed to modulate the frequency 

of the opposing oscillator.  

 

The most famous implementation of the rungler is in the Benjolin, a DIY workshop 

instrument Hordijk designed to be built in workshops. It also appears in his Hordijk modular 

system, and the Blippoo Box. The Benjolin design has been adapted by several other Eurorack 

companies, including After Later Audio and Epoch Modular, as well as standalone synthesizers 

by companies such as Macumbista. One element missing from some of the adaptations, but not 

all, is the ability to substitute external signals for the internal clock and data oscillators.  

 

Another aspect that informed the design of the Cascading Register came from the world 

of cryptography, a linear feedback shift register, known as an LFSR. An LFSR is a common way 

to generate pseudorandom numbers in both hardware and software. Their simplicity means 
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they’re easy to implement and can be constructed without using thermal noise used for analog 

noise to generate randomness. They are deterministic and given the same initial state and 

feedback configuration will generate the same string of pseudo-random values. An LFSR takes 

two of more of the stages of the shift register, known as taps in this case, and combines them 

through logical operations before routing the resulting signal back to the data input, creating a 

linear feedback path of binary information. Usually, the logical operation is a Boolean XOR 

logical operation. Boolean logic takes binary signals and compares them against each other, 

turning the output of the logic on or off based on the states of the inputs. The output of an 

XOR logic gate is on if one input or the other are on, and off if both or neither are on. Put 

another way, the output is on if the inputs do not match, and off if the state of the inputs do 

match.  

     

Figure 18: XOR Truth Table 

 

A maximal length shift register configuration refers to the configuration of taps that 

create the longest string of values and vary based on the length of the shift register. The length 

of the sequence can be calculated as 2^n-1, or two to the length of the shift register, minus one. 

It’s minus one because if all the stages of the shift register are off, no data could be recycled, 

creating an invalid state. So, in an eight-bit shift register, the maximal length is 255 steps. In a 32-

bit shift register, however, the length is 4,294,967,295 steps long. If you calculated the numbers 

sixty times a second, it would take over two years before it repeated itself.  

 

 In an eight-bit shift register, the configuration of taps that creates the longest string of 

pseudo-random values takes the eighth, sixth, fifth, and third stages of the shift register and 

XORs them together. The Cascading Register is not a maximal length shift register, as only the 

eighth, sixth, and fifth stages are used as feedback taps. One could patch up a maximal length 

LFSR by manually patching the third stage into the external data input. 
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In addition to the external data input and the three feedback taps that supply data, a 

button on the bottom of the module allows users to manually enter data into the data stream. 

This button, labeled Seed, gives a direct manual input to influence the course of the shift 

register. However, it is in the XOR path, meaning that pushing the button may or may not enter 

a high state into the first stage of the shift register, depending on the other parts of the data 

path. In order, the eighth stage is XOR’d with the sixth, that is XOR’d with the fifth, that is 

XOR’d with the seed button, and finally that resulting signal is XOR’d with the external data 

input.  

 

Figure 19: Data Feedback Path with XOR Logic Gates 

 

Another kind of shift register that inspired the Cascading Register is an analog shift 

register. An analog shift register is essentially a series of sample and hold function blocks. An 

analog shift register marries the function of a sample and hold with the idea of a shift register. It 

is a series of sample and hold function blocks. Instead of losing the original sampled signal, on 

every clock pulse, that voltage level passes from one sample and hold to the next, creating what 

is known as an arabesque musical form, where a melody passes down a line of voices. It was first 

implemented by Barry Schrader with help from Dr. Fukushi Kawakami, known to his friends as 

“Fortune.” They collaborated on a series of modules to extend the functionality of Schrader’s 

Buchla synthesizers, known as the Fortune Modules. Kawakami made four modules for 

Schrader, Control Voltage Smoother #1, Control Voltage Smoother #2, Control Voltage Matrix 
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Gate, and the Analogue Shift Register. The first commercially available version of the Analog 

Shift Register was made by Serge Tcherepnin and included in Serge Modular System. 

  

The Cascading Register contains no sample and holds but was inspired by the concept of 

an analog shift register. The three control voltage outputs available on the Cascading Register 

come from the state of the gate signals that pass through the eight-bit shift register. CV1 is 

determined by the first four gates, CV2 comes from the middle four gates, and the last four gates 

inform CV3. Each set of four gate signals runs into a simple digital-to-analog converter, creating 

a stepped CV signal determined by the state of the gates. As I mentioned before, the Cascading 

Register contains no sample and holds, but the core idea of a set of information passing down a 

series of outputs comes from the realm of the analog shift register. 

 

 

Figure 20: Oscilloscope showing Clock and CV Signals 1-3 

 

The Cascading Register has three stepped analog control voltage (CV) outputs, whose 

output level is tied directly to the three white knobs on the panel. CV1 and CV2 pass through 

attenuverters before their outputs, and CV3 has an associated attenuator. An attenuator can be 

thought of as analogous to a standard volume control on a stereo. All the way counterclockwise, 

the signal level is off, and as you turn clockwise, the voltage level increases until it reaches its 

maximum level. Attenuverters, on the other hand, are off when the knob is in the center of its 

range. Turning clockwise increases the voltage level in the positive domain, while turning 
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counterclockwise inverts and increases the voltage level in the negative domain. For example, if 

a user patches CV1 or CV2 to the pitch input of a voltage-controlled oscillator, turning 

clockwise increases the pitch of the oscillator, while turning counterclockwise decreases the 

pitch of the oscillator.  

 

In addition to the three analog CV outputs, the Cascading Register includes individual 

outputs for each stage of the shift register. The zero-indexed labeling goes from ØØ to Ø7 

arranged vertically from top to bottom. The outputs are all binary gate signals, typically used in 

modular synthesis as timing signals.  Constructing a simple pseudo-random rhythm is a matter of 

patching the first output to a kick sound and a snare from a lower gate output, which will 

generate a call-and-response rhythm offset by the selection of the gate output. While gate signals 

are most commonly used as timing signals, they also work as modulation signals. The sharp 

onset and near-immediate decay makes them excellent as modulation sources for percussive 

sounds, creating a defined accent in timbre or volume when the gate is active.  

 

The Cascading Register also comes equipped with an internal voltage-controlled clock 

oscillator, normalized to the clock input. Normalized in this case means an internal connection 

from an output to an input on the same module, that is interrupted when you patch a cable into 

the input jack. The clock oscillator is a square wave oscillator that ranges from sub-audio to low-

audio frequencies. The output of CV3 is also normalized to the CV input of the clock oscillator, 

creating a feedback loop that generates a clock signal that slows down and speeds up depending 

on the output voltage from CV3. This normalized connection between CV3 and the CV input 

on the clock oscillator is the reason that CV3 used an attenuator instead of an attenuverter. It’s 

much easier to zero out the modulation of an attenuator than an attenuverter, as the attenuator’s 

off position is a function of the mechanical connection on the potentiometer. An attenuverter’s 

off position is close to the middle of the range of the potentiometer, but finding the exact off 

position is a difficult art. 
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Figure 21: Block Diagram of the Cascading Register 

 

While the Cascading Register features an internal clock oscillator, it also includes an 

input for an external clock source. This accepts signals from sub-audio to audio, up into the 

range used in video synthesis, well above the range of human hearing, entering the realm of the 

scanline speed on a television. While this is not a necessary addition for audio synthesis 

purposes, and increased the overall cost of the module, it allows the Cascading Register to fit 

into the world of video synthesis, becoming a complex noise generator and rough down sampler 

for video.  
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Figure 22: Video Noise Generated by the Cascading Register 

So far, I’ve described the Cascading Register in terms of the front panel, but I turn now 

to the interior design of the module, examining the schematic and design of the printed circuit 

board. 

 

 

 

 

 

 

Figure 23: Schematic of the Shift Register, Clock Input, Data Inputs, and Buffer Sections 
of the Cascading Register 
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This first sheet shows the main shift register implementation. I used a CD4015 dual 

four-stage shift register connected together with a common clock and the four data bit (QD) out 

from the A shift register into the B shift register. The clock and data inputs include an LM319 

comparator with a reference voltage of approximately 0.5V. The shift register outputs binary 

signals, with the fifth, sixth, and eighth XOR’d together as seen in this collection of logic gates. 

In addition, these binary signals run into a pair of CD4050 hex buffers before reaching the 

outputs, in order to ensure a steady +5V signal level. I used transistors in order to buffer the 

signals going into the LEDs which allow signal to flow through the LEDs to ground when they 

receive an active signal.  

 

Figure 24: Schematic of the Digital to Analog Converters and CV outputs 
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Next, we have the three digital to analog converter circuits. I used R2R digital to analog 

converter circuits which involve two resistor values, R and 2R, or 10K and 2 x 10K or 20K. CV1 

and CV2 pass into these attenuverter circuits. I used a pair of 100K resistors connected to the 

potentiometers, which gives a slight curve to the linear response of the potentiometer, giving 

more of a center 0V spot to allow users to zero out the modulation. CV3 simple runs through 

the potentiometer connected to ground. The LM6172 ICs require a 1K resistor in the feedback 

path when used as a buffer.  

 

Figure 25: Schematic of the Clock Oscillator 

The clock oscillator uses a CD4046 Phase-Locked Loop configured as a Voltage 

Controlled Oscillator. C18, R13, and R14 determine the frequency range of the oscillator. The 

voltage present at pin9 VCOIN controls the frequency of the oscillator within this frequency 

range. The clock rate potentiometer and external CV input are summed in a non-inverting op-

amp before passing by a pair of diodes that ensures the signal running into the IC does not go 

above +5V or below 0V.  
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Figure 26: Schematic of the Power Sections 

 

The final part of the schematic is the power section. This shows the power connected to 

each of the ICs with 0.1uF capacitors connected to ground to ensure clean power is supplied. 

The Eurorack power connector is SV1 which supplies the +12V, -12V, and ground signals. 

+12V and –12V pass through D1 and D2 which ensure that if the pin header is plugged in 

backward that the module isn’t damaged. F1 and F2 are ferrite beads which add filtering to the 

power. C3 and C4 are polarized capacitors that also filter the power rails. The 

TPS7A4901DGNR is a low noise and low dropout voltage regulator that takes the +12V power 

rail and converts it to a +5V signal. SV4 and SV5 are pin headers connected to the shift register 

gates, clock signal (either internal or external), +12V, -12V, and ground. These are for an 

expander board that would allow the Cascading Register to connect to other modules that 

expand the functionality. At present, this is not included in the Cascading Register, but there are 

plans for future modules.  

 

 

My next goal for developing a Eurorack module was to create a chaotic circuit. I had 

been working on a self-designed chaotic signal generator as part of a multi-function module I 

mentioned I needed a break from, but I wanted to simplify and create a single purpose module 

instead of one with four function blocks. I primarily looked at the work of J.C. Sprott, Ian Fritz, 

and Andrew Fitch during those planning stages. But how does one go about creating chaos in 

circuitry?  

 

Constructing a chaotic circuit involves creating an analog computer that solves the 

chaotic differential equation. This is done with operational amplifier (op-amp) integrators, as an 
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integrator's output voltage is the input voltage's negative integral. An op-amp integrator consists 

of an op-amp whose positive input is grounded with a feedback path from the output to the 

inverting input with a capacitor between the output and the input. A resistor comes before the 

feedback loop. The ratio of the size or capacitance of the capacitor and the resistance of the 

resistor determines the rate of change of the output voltage. The voltage level is determined by 

the time a signal is present at the input that allows the feedback path across the capacitor charges 

and discharges. As the op-amp is configured with a negative-feedback path, it produces an 

output voltage that attempts to maintain a virtual ground at the inverting input. Virtual ground 

refers to a signal that is at the level of ground, a 0V reference voltage, without being connected 

together.  

 

The result is a linear ramp of increasing voltage at a rate set by the RC 

(resistor/capacitor) ratio that increases until the voltage reaches saturation or the maximum 

output voltage of the op-amp. If the input signal to the integrator is a square wave, the integrator 

will create a triangle wave that follows the square wave at a slew rate determined by the RC ratio. 

In the case of chaotic applications, the integration creates the integral of the signal passing into 

it. However, a nonlinear element is necessary to create a chaotic circuit. This is because a linear 

system cannot be chaotic. This nonlinear element comes in various forms, but the simplest is a 

diode. A diode is an electronic component whose primary function is to allow current to flow in 

one direction. The forward direction of a diode offers close to no resistance, while the reverse 

direction of the diode provides near-infinite resistance. An ideal diode has two states, on or off, 

allowing current to flow or not. When the diode is off, the current flow through the diode is 

zero; when on, the voltage drop is zero as the current flows freely. However, the world does not 

operate in an ideal way. The current does not change linearly as the voltage increases across a 

diode. By inserting a nonlinear element, such as a diode, into the feedback path of several 

integrators, you get a nonlinear differential equation in circuitry. 

 

Ya Jerk is a two-channel chaotic signal generator based around Jerk chaos, as described 

in J.C. Sprott’s paper, “A New Chaotic Jerk Circuit” and as modified by Andrew Fitch of 

Nonlinear Circuits for use in the context of modular synthesizers. It includes two channels that 

by default are arranged in a self-influencing feedback loop but can easily be disconnected from 

each other. The term jerk in jerk chaos comes from physics and describes how an object’s 
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acceleration changes with respect to time. Jerk is the third derivative of position after velocity 

(first derivative) and acceleration (second derivative).  

 

 

Figure 27: omiindustriies Ya Jerk Front Panel 

 

The two channels of the module are arranged side by side, the left being the Blue 

channel, and the right the Red channel, based on the color of the associated LEDs. The controls 

are “Rude”, “Jeez”, “Seriously?”, and “What The Heck?”, chosen specifically for their vague 

meanings with regards to synthesizer functions, but playing on a theme of an argument. The 

module was conceived as a chaotic argument between two similar but slightly different chaotic 

entities, and by argument, I refer to the self-influencing feedback loop the two sides are arranged 

in by default. “Rude” and “Jeez” control the shape of the chaos, while “Seriously?” And “What 

The Heck?” Control the rate of integration within the feedback loop and relative speed of the 

chaos. In many settings, the chaos is non-periodic, meaning it doesn’t oscillate at a set frequency 

like an oscillator, but rather oscillates up and down on a path that does not repeat. In other 

settings, the module oscillates at a periodic rate.  
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Each side has three outputs, X, Y, and Z, which each behave slightly differently. I 

changed the naming convention of the X, Y, and Z outputs from their labeling in Sprott’s paper 

based on an early version of Fitch’s design of the Jerk chaos circuit for modular synthesizers. In 

Sprott’s version, the X and Z are swapped. After asking Andrew Fitch why he made that change, 

he mentioned that the X output of a chaotic signal generator is often the most irregular while the 

Z output is the smoothest. The names originally come from defining an X variable and then 

calculating the two successive derivatives of that variable. When replacing the X with a Z, the 

results are the same, but X is the third derivative of Z instead of the other way around. The 

nonlinear equations that describe this Jerk chaos system when written as three first-order 

differential equations are as follows (written twice to show both variable configurations with 

Sprott’s equations on the right) 

Ż = Y or Ẋ = Y 

Ẏ = X or Ẏ = Z 

Ẋ = -X - Z - 10^-9[exp(y/0.026) - 1] or Ż = -Z - X - 10^-9[exp(y/0.026) - 1] 

I got more into first-order differential equations in the software section of this thesis as I use 

them to generate different chaotic signals in code, so a more detailed explanation is forthcoming. 

The variables with dots over the variable correspond to the time derivative, or that value over 

time.  

 

The outputs sit somewhere between an LFO (low-frequency oscillator) and a fluctuating 

random voltage seen by smoothing out a stepped random voltage from a sample-and-hold. The 

X outputs are the most complex, creating a sharp onset and decaying sinusoidal bounces. The Y 

outputs are less violent and complex, but still retain a dynamic movement as they oscillate. The 

Z outputs are the smoothest and most sinusoidal, but still display chaotic behavior and a less 

violent bouncing behavior. 
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Figure 28: Oscilloscope View of Red Z, and Blue X, Y, and Z 

 

 

Figure 29: Oscilloscope View of Blue X, and Red X, Y, and Z 

 

The outputs are bipolar, meaning they go both into the realm of positive and negative 

voltages. The outputs have a wide voltage range that changes depending on the settings of the 

controls and range up to a little more than +/-10V. For many applications this is a little too wide 

a modulation range, so users are advised to keep an attenuator handy for processing the voltage 

level down to a more manageable range.  
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 As I’ve mentioned, by default, the two sides are connected in a feedback loop, through 

normalization into the Influence inputs. The X output from the Blue channel is normalized into 

the influence on the Red channel, while the Z output from the Red channel is normalized into 

the Influence input on the Blue channel. The influence inputs include attenuverters to scale and 

invert the incoming modulation. The Influence inputs don’t change the frequency of the chaos, 

but rather sort of inject energy into the internal feedback path of the chaos. If users input gate or 

trigger signals into the Influnce inputs, the chaos roughly syncs to the incoming signals, but does 

not produce perfectly on-tempo modulation you might find on another modulation source with 

a dedicated clock input such as a tempo-synced LFO, envelope, or stepped random voltage. 

These inputs don’t work particularly effectively with audio rate signals but will work with a wide 

range of sub-audio signals. The Jerk chaos could work as a crude audio filter with a different 

configuration of parts, as was mentioned in the Slater paper, but that was not the goal of this 

particular project.  

 

 

 

 

Figure 30: Schematic of the Blue Channel 
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Figure 31: Schematic of the Red Channel 

 

Now, moving from the front panel to the interior circuitry. These two schematics show 

the design of Ya Jerk. As you can see, the two sections are nearly identical, but the orientation of 

the LED is swapped between the two sides and there are a few changed resistor values. This is 

the cause of the differences between the outputs of the Blue and Red channels. The LED 

orientation of the Blue channel is consistent with the original Sprott paper and the first available 

version of the Fitch design. The orientation of the Red channel comes from the newer version 

of the Fitch designs, such as Stooges, a three-channel jerk chaos module. The resistor values for 

R5/R7 and R20/R22 are different, also giving slightly different behavior. This comes from an 

earlier version of the Ya Jerk where the integrator capacitors were different values, 1uF and 

10uF. The 10uF capacitor configuration was originally chosen to allow the two sides to run at 

different rates but was scrapped because the chaos had dead spots where the outputs would 

completely turn off. While the capacitor values were changed to match, the resistor values were 

kept as is to add small variation in the overall behavior. 

 

Three op-amps are configured as integrators, while the fourth op-amp acts as an 

inverter. An inverter takes the state of a signal passing through it and changes the gain to –1, 

swapping its polarity without adding or removing any amplitude. While an oscillator traditionally 

increases in frequency as you turn the potentiometer in the clockwise direction, Ya Jerk works 
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the other way, slowing down as the “Seriously?”/ “What the Heck?” Controls are turned 

clockwise. This is because those controls set the rate of integration, so turning clockwise 

increases the rate of integration, much like you would see on a slew generator or portamento 

control. 

 

The “Seriously? / “What The Heck?” Controls determine the shape of the chaotic 

outputs and sit in a feedback loop that do not contain the nonlinear LED elements. The shape 

of the chaotic signals does not just mean how smooth or jagged they are but also includes the 

amplitude of the signals, as the amplitude of the outputs is not constant in all potentiometer 

positions. 

 

Each of the stages of the integration pass into op-amps that buffer or amplify the 

outputs before their final output jacks. The X outputs are simply buffered, meaning that no 

additional amplification is added to their output voltage. The Y and Z outputs travel through 

non-inverting amplifier configured op-amps. A non-inverting amplifier is a way of adding 

amplitude to a signal while retaining the phase of the signal. The gain can be calculated as 1+ 

R2/R1, where R1 is the feedback resistor and R2 is the resistor connected to ground. If the two 

are equal, as with X and Y of the Blue channel, the gain is two. The Red Y has a gain of 2.5, 

while the Red Z has a gain of three. For the Blue X and Red Z, a resistor is placed between the 

output of the op-amp and the normalization into the Influence CV input jacks, as well as before 

all the output jacks. This is to prevent the accidental problem of connecting two outputs 

together, which may damage a module if not protected by a simple 1K ohm resistor.  

 

The Influence CV input section uses the same attenuverter design as the Cascading 

Register but on the input stage rather than the output stage. The amount of change that the 

influence input imparts on the behavior of the module was surprising when first testing the 

module. Even just slight changes to the attenuverter settings cause massive changes in behavior 

as the chaos continues to move through its attractor orbits, thus relating to one of the 

fundamental elements of chaos, sensitive dependence to initial conditions.  
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In the next chapter, I will explore chaos on more of a mathematical level in software. By 

implementing chaotic equations in code, I can better visualize their behavior using computer 

graphics software capabilities that I do not have access to in analog hardware.  
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Chapter 4 Software 

In order to better illustrate the idea of how chaos behaves over time and sensitive 

dependence on initial conditions, I chose to not only implement chaos in hardware, but also in 

software. This started as experiments in Max/MSP and Processing, before adding 

TouchDesigner and Python. While implementing chaos in a hardware modular synthesizer 

enables me to use it in a rather straightforward musical application, I chose to also explore chaos 

in software to better visualize and attempt to understand its behavior in a more straightforward 

environment. While the oscilloscope shots shown in the previous chapter allow you to see how 

the chaos moves over time in one dimension, I lack the hardware to properly display chaos in 

more than two dimensions. However, by solving chaotic equations in software, I could plot the 

X, Y, and Z parameters in a 3-dimensional environment.  

 

The first place I wanted to start was with the Lorenz attractor, as it is one of the most 

ubiquitous and well-known examples of chaotic behavior. Not only that, but its simplicity makes 

it more accessible to someone without a background in mathematics, such as me.  

The Lorenz Attractor can be described with the following equations 

dx/dt = s(y - x) 

dy/dt = -xz + rx - y 

dz/dt = xy - bz 

 

With the typical parameters being s = 10, r = 28, b = 8/3. The variable d_ over dt 

indicates the change of this variable over time. These equations are plotted continuously and 

each time the equation is solved, the resulting parameters are fed back into the equation and 

describe a rate of change.  

 

Where did these equations come from though? Well, as I mentioned in an earlier 

chapter, Lorenz came across these three equations that describe convection, or the rising of hot 
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gases or liquids. He had originally been working on a set of 12 equations as they related to 

weather in his simplified simulated world, but after months of working, had narrowed it down to 

three equations that correspond to three dimensions. After all, humans are not well adapted at 

visualizing phenomena in 12 dimensions. The narrowed down equations correspond to the 

stream function, change in temperature, and deviation in linear temperature.  

 

dx/dt = s(y - x) corresponds to the stream function. The variable “s” (or sometimes 

written as “p”) corresponds to the Prandtl Number, a dimensionless number that is used to 

indicate the ratio of viscosity of a fluid to thermal conductivity. This number changes with the 

fluid being studied. For example, sodium has a Prandtl number of 0.01, water has a Prandtl 

number of 6.90, argon has a Prandtl number of 22.77, and xenon has a Prandtl number of 

674.91. The standard variable in a Lorenz equation is 28, so much greater than water and 

somewhat greater than argon. The lower than Prandtl number, the more effective the given gas 

or liquid is at conducting heat. 

 

dy/dt = -xz + rx - y corresponds to a change in temperature. The variable “r” 

corresponds to the Rayleigh Number, another dimensionless number that relates to heat transfer 

in convection. It can be calculated by multiplying a Prandtl number by the Grashof number. The 

Grashof number is a ratio of the buoyancy and viscous forces in a fluid. In this equation, -xy is a 

nonlinear term, an essential element in chaos.  

 

Finally, dz/dt = xy – bz corresponds to the deviation in linear temperature. This 

equation has to do with the ratio between the height of a fluid layer with the width of the 

convection rolls, or the rolls of counterrotating air in the atmosphere that sit approximately 

horizontal to the earth. In this equation, the ‘xy’ element provides the nonlinearity.  

 

When plotted, these simple equations result in a complex shape that traces the outline of 

two points in space, poetically mirroring the shape of a butterfly’s wing. Could the smallest flaps 

of a butterfly’s wing in the jungle result in a hurricane two weeks later? We can’t know for sure, 

but what is known is the small perturbation in initial state of a system as varied as the weather 

can result in huge changes over time.  
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Over time, a Lorenz attractor settles down into a discernible and well-recognized shape. 

Given the same exact initial condition, the system behaves the same way and unfolds tracing its 

way through space. However, if the initial conditions are varied, even slightly, the results may be 

wildly different.  

 

I decided to investigate that by plotting a Lorenz attractor, not for an extended period of 

time, but on a small timeline, say 500 iterations of the equations. For this application, I chose to 

implement it in TouchDesigner with the script SOP providing Python code in order to calculate 

the attractor over time. The initial conditions of X, Y, and Z are generated randomly every time 

the script is called with a range of –0.5 to 0.5. While this seems like a small range of initial 

conditions, the concept of sensitive dependence becomes very clear on this timescale. Below are 

several images of the resulting 500 iterations of the Lorenz attractor.  
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Figure 32: Three Versions of the Lorenz Attractor At 500 Iterations 

As you can clearly see, they look strikingly different from each other when plotted at this 

scale. If you let these run for, say 25,000 or 50,000 iterations, they would appear more closely 

related. Granted, each iteration would, in fact, be unique and behave differently, but when 

viewed on a large enough scope, the behavior begins to settle down into an almost predictable 

pattern as it traces its way through its faux-butterfly wing path. Below is an example of the 

Lorenz attractor when iterated at 25,000 steps showing this behavior, as seen in an earlier 

chapter 
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Figure 33: Lorenz Attractor at 25,000 Iterations 

 

A paper caught my eye while browsing J.C. Sprott’s website, entitled “Some Simple 

Chaotic Flows.” His goal with the paper was to study the existence of some of the simplest 

chaotic equations. Lorenz’s conjecture was that the Rössler attractor was the simplest example of 

a chaotic equation, in the algebraic sense rather than the processes that the equations describe.  

 

The Rössler attractor can be described as  

dx/dt = -y - z 

dy/dt = x + ay 

dz/dt = b + z(x - c) 

Where typically a and b = 0.2 and c = 5.7 
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The Rössler attractor was proposed by Otto Rössler in 1976 as a way to produce chaos 

in a manner mathematically simpler than the Lorenz attractor. In contrast to the Lorenz 

attractor, it only has one nonlinearity in it. The nonlinearity appears as z*x in the equation dz/dt 

= b + z(x - c). When comparing the attractor to the Lorenz model, the most obvious difference 

is that the Rössler attractor only revolves around one point, whereas the Lorenz attractor has 

two points of attraction. In contrast to the Lorenz model, the Rössler attractor does not come 

from a simplified physical phenomenon, but purely from the realm of mathematics.  

 

 

Figure 34: Rössler Attractor 

 

The Rössler and Lorenz attractors are composed of seven terms and either one or two 

quadratic nonlinearities respectively. It’s incredible the amount of complexity that is formed 

from these simple differential equations solved over time. But could chaos emerge from simpler 
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equations? Sprott ran a series of computer-aided experiments on differential equations with six 

or fewer terms that returned positive Lyapunov exponents.  

 

A Lyapunov exponent measures how two points that start near each other change over 

time. By near, I mean incredibly close to each other, almost on top of each other. The Lyapunov 

exponent is represented by λ. If the Lyapunov exponent is less than zero, a negative number, a 

system falls into periodic behavior. The more negative the number, the more stable the system 

is. If the Lyapunov exponent is equal to zero, you get a fixed point or an eventual fixed point. If 

greater than zero, the small distances between two points grow indefinitely over time and you 

get chaotic behavior. 

 

After examining several thousand potential chaotic equations, and throwing out the vast 

majority of them, Sprott came up with 19 examples of chaotic flows comprised of either six 

terms and one nonlinearity or five terms and two nonlinearities. He named them simply Case A 

through Case S. Cases A-E have five terms and two nonlinearities, and cases F-S have six terms 

and one nonlinearity. Many equations with six terms and two nonlinearities were discovered 

during this process, but this experiment was tied to algebraic simplicity in chaos and were thus 

discarded. No cases of systems with five terms and one nonlinearity or cases with less than five 

terms were found in this study.  

 

 

Figure 35: Equations for Sprott's Cases A-S 
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Complex behavior from simple building blocks and rules has and continues to be a point 

of interest for me in my research and artistic practices. I decided to recreate the chaotic 

equations in the Max/MSP coding environment Gen~. This was firstly because of the ability to 

load gen~ patches onto a Daisy microcontroller, but also because gen~ provided a sample-level 

way to manipulate code that lent itself to patching up differential equations. The equations could 

also be developed into a Max for Live (M4L) device in order to bring chaotic modulation into an 

Ableton Live environment. 

 

I paired the gen~ code with Processing code in order to visualize the resulting chaos in 

3D space. While Max/MSP has the capability to run the code and display it in 2 dimensions 

using the scope object, Processing includes the ability to plot the resulting signals in 3 

dimensions with the additional parameter of color to better illustrate the behavior of the chaos. 

 

Below are a few examples of the resulting chaos.  

 

Figure 36: 3D Views of Cases B, C, F, and H 
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The equations are selected by a dropdown menu which outputs an integer and a bang 

message. The integer from the dropdown menu selects which equation is active by a nested ‘if’ 

statement on input two. The bang message has two purposes. One is to send a 1 and then a 0 

with a 25ms delay to input three; and the other is to select a random number between 0-1000, 

which is then scaled to a number between –0.03 and +0.03. When input three receives a 1, it 

resets the X, Y, and Z values to a new value. This new value is determined by the three random 

objects added to an initial value of 0.05, which Sprott indicated in his paper was a good initial 

condition. By adding this small amount of variation, the initial values are close to that provided 

working initial condition, with enough variation to generate different behavior every time the 

equation is selected.  

 

Here is an example of some of the code in the Gen~ codebox. Commented out are the 

equations source from Sprott’s website, which just act as reference for the resulting code. The 

xgain, ygain, and zgain lines set the overall amplitude of the resulting chaos, which I tried to 

contain to the range of +/-1, but with some room for deviation. I used the variable “a” in the 

cases to represent the integers in the chaotic equations, in other equations I used additional 

variables, with the labels “b” and “c”, although one could use any variable names they see fit.  

 

Figure 37: Gen~ Implementations of Cases B, C, and D 
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The equations given could not be calculated in the form listed on Sprott’s website, so 

they were refactored. For example, in Case C, dx/dt = yz is changed to x = x + dt * ( y * z). 

This could be broken down to x is equal to itself plus some time factor (dt) and multiplied by the 

y and z variables. After that the Y and Z variables are calculated, and the new X, Y, and Z 

variables are fed back into the equation, replacing the old values. This process is repeated 

continuously to generate the resulting chaos.  

 

 

Figure 38: Max/MSP Controls outside of Gen~ Codebox 

 

The speed of the chaos is determined by a pair of sliders, one with a range of 0-20, and 

the other with a range of 0-499, which are added together. This corresponds to Hertz or cycles 

per second; giving users the ability to set the chaos to behave as audible noise or sub-audio 

modulation. The slider values are multiplied by 44.1, or the sampling frequency, and passed into 

a phasor~ object, a delta~ object, and finally a <~ object before running into the gen~ codebox 

to run the equations. The dt or time constant was left static at dt=0.05. I ran into issues with 

three of the equations and they were thus left out of the final selection of equations. Cases I, L, 

and Q tended to fly off into infinity and crash the program.  

 

I then converted the resulting output from the gen~ code, which was not output as 

numbers but Max’s signal format, usually used for audio signals. I rescaled it from –1.0-+1.0 to 

0-1.0, ran it into a meter object which turned it from a signal to a float, and then rescaled it back 
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from 0-1.0 to –1.0-+1.0. These floats were then packed, prepended, and sent as OSC messages 

to Processing.  

 

 

Figure 39: View of the Entire Max/MSP Patch 

 

Processing is a coding environment that is very well suited to visual applications. It uses 

a simplified version of JavaScript with a focus on generating visuals from code. It is a flexible 

tool and is suited for both 2D and 3D applications. The Processing code is broken down into 

two parts, the main code and an external function in order to keep the code concise. The canvas, 

or area where the visuals are generated, has a width and height of 1000 pixels and the code runs 

at 60 frames per second.  
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Figure 40: The Main Processing Code 

 

The function, named Particle, scales the OSC messages from –1.0 and 1.0 to the width 

and height of the canvas divided by four in order to keep the signals within the bounds of the 

drawing area. Naturally, the X, Y, and Z signals from Max are mapped to the X, Y, and Z axis of 

the 3D space. Additionally, the X, Y, and Z signals get mapped between 0-255 in order to 

generate red (X), green (Y), blue (Z), and alpha (also Z) for the drawn stroke. The draw function 

takes the XYZ points in space and the resulting color and generates a series of circular points 

that trace the shape of the chaos in space.  
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Figure 41: The Particle Processing Code 

From there, I chose to explore these simple chaotic equations in TouchDesigner, 

another visual programming environment, but much more suited to real-time visualization. 

Using the Script SOP, I wrote external Python code in order to run the same equations I 

explored in Max/MSP and Gen~. TouchDesigner also has the added benefit of a suite of video 

processing capabilities, which I harnessed for artistic applications. The results of my experiments 

in coded chaos generate visually interesting results, which appeal to me not just as someone 

interested in the behavior of chaos but also as a visual artist.  

 

 

Figure 42: Python Initial conditions 
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First to initialize the code, I generated an empty array to store the points of the XYZ 

signals. The XYZ starting positions are randomized in a similar way to the Max MSP, but inside 

the code instead of externally. I chose to allow control over the dt time variable, as well as the 

number of points drawn by the program and the active equation. The Python code took the 

empty array and populated it with the XYZ points from the equations. Then took the previous 

point and a new point and drew a line between the two of them. When the array of points, 

defined by the NumPoints parameter, reaches the maximum number of points, the last point in 

the array is lost. It continuously updates, tracing the results of the equations in a 3D 

environment. An external operator, the Timeline CHOP is called to generate the code in real 

time, much like the Phasor~ object in Max.  

 

 

Figure 43: Main Processing Code For Drawing 
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There are slight variations in how the code is written due to the differences between 

Python and Gen~. The largest difference is the omission of the “dt” parameter within the 

equations. This happens outside the functions when the next point is calculated from the 

previous point in the array. The equations also are formatted slightly differently; instead of the x, 

y, and z variables equaling each of the equations, I used xp, yp, and zp to store the state of the x, 

y, and z variables before passing those values back into the equations. Unfortunately, many more 

of the equations tended towards infinity or otherwise crashed after running for a short while. I’m 

unsure of what caused these equations to behave erratically, I would imagine that 

TouchDesigner is not intended to solve differential equations in real time. 

 

 

Figure 44: Equations for Cases E, F, and G, and a nested elif Tree with Each Case 

 

The results of the Python script then pass into a Geo COMP, which takes the drawn 

points and puts them in a 3D environment. Always paired with the Geo in TouchDesigner are 

the Camera and Light COMPs, which act much in the way you might expect, lighting and 

capture a view of the geometry. A Line MAT gives the drawn points more of a defined shape 

and a light purple color. The camera rotates around the drawn chaos points, varying the view 

over time and making it more dynamic. These elements all combine in the Render TOP, which 

takes the 3D environment and converts it to 2D images.  
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Figure 45: TouchDesigner 3D Rendering 

After the Render TOP, the resulting 2D image passes into a Composite TOP. This TOP 

combines two or more video signals together in a variety of operations, from multiplying them 

to taking the XOR to burning the color of one signal onto another. I composited the render 

with a Feedback TOP. As the name implies, the Feedback TOP is used for generating feedback 

loops. By default, in TouchDesigner, you can’t connect and output back into an input further 

back in the signal chain; but the feedback TOP is the exception to that rule, specifically designed 

in order to generate feedback loops.  

 

I’ve discussed different implementations of feedback loops during the course of this 

thesis. The TouchDesigner internal feedback loop is just one example of a video feedback loop. 

The other is a camera/monitor feedback loop, which I will discuss further in the next chapter. 

The feedback TOP in TouchDesigner offers certain functionality not available in physical 

feedback loops but has certain limitations as well. The feedback loop takes the output and routes 

it back to the input, creating a self-influencing feedback loop.  
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Figure 46: TouchDesigner Feedback path 

 

The source for the feedback loop is a Null TOP on the other side of the composite 

TOP, an empty container that can store information. The Feedback runs into a HSV Adjust 

TOP, or Hue, Saturation, and Value adjuster. Any changes between the feedback TOP and the 

null where it takes information from changes the behavior of the resulting image. Changes may 

include rescaling, coloring, rotating, or otherwise affecting the behavior of the signal passing 

through the loop. 

 

I made only slight adjustments to the saturation and value multiplier, adding just a little 

bit of saturation and subtracting just a little bit of value. This is to make sure the feedback 

doesn’t get out of hand but adds a bit of interesting variation to the resulting signal. The 

composite TOP is set to difference, outputting the difference between the incoming chaotic 

figure and the resulting feedback loop. This results in trails following the curls of the chaos as it 

traces its path through the 3D space. With the addition of saturation enhancement, the result is 

textured and colorful, tracing where the 3D movement overlaps with the 2D feedback.  

 

The final result of this process is like the results from the Max/MSP and Processing, but 

intentionally different and distinct. While the actual drawn shapes lack the vibrant colors 

generated from Processing, the addition of the feedback and constantly turning camera angle 

adds interesting variation that separates the two chaotic operations. Below are some of the 

resulting images.  
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Figure 47: Cases A, B, and C 
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I took the experiments in TouchDesigner and decided to apply them to a larger project, 

not just as a self-contained image or video generator, but as part of an installation. The next 

chapter details my applications of both hardware and software and chaotic applications.  
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Chapter 5 Applications 

 

In order to bring together the worlds of hardware and software, I chose to exhibit both 

in an installation entitled Feedback Loops, All the Way Down. The goal of the installation is to 

showcase some of the ways to harness chaos and unpredictability in an audio/visual artistic 

context. The name comes from a mantra repeated in order to center and calm me down when I 

become overwhelmed by anxiety. The universe is a series of complex and interconnected 

feedback loops that influence every aspect of our lives and the existence of everything in the 

universe. 

 

 

Figure 48: View of the Installation 
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The installation combines both audio synthesis from a modular synthesizer and video 

synthesis and manipulation from TouchDesigner. The goal was to combine and explore the 

techniques of software chaotic signal generation, creating unpredictability in hardware, and how 

to apply audio and video feedback for artistic applications. However, the hardware and software 

elements are not separate, but brought together with the help of a converter named 

Introductions.  

 

Introductions is a small interface that turns analog CV and gate signals into information 

that a computer can understand. It grew and evolved several times starting in the fall of 2021 

and to this day is still being refined. The idea was to be able to interface a modular synthesizer 

with a computer in order to extend the functionality of both. In the current iteration, it takes CV 

and gate signals and turns them into MIDI note on/off and CC messages, although it could also 

send other kinds of serial information, i^2C, or other data types with some tweaks to the code.  

 

 

Figure 49: Introductions in Front of Small Modular Synthesizer 
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The concept started as a way to send information both to and from a computer, but the 

scale of the project was adjusted for the time being. Instead of sending and receiving data, the 

data flow is one way. The hardware uses a Teensy 3.2 microcontroller and a collection of jacks 

and potentiometers. The potentiometers allow users to adjust the overall range of signals coming 

into the microcontroller. With nothing plugged into the corresponding jack, a 3.3V signal is 

normalized into the signal path, allowing the potentiometer to act as an offset or manual 

controller over signal level. The Teensy 3.2 microcontroller accepts signals up to +5V, so the 

potentiometers act to attenuate the signal level to a range the microcontroller expects. Because 

the Teensy 3.2 only accepts signals between 0V (gnd) and +5V, I am unable to patch the outputs 

of Ya Jerk directly into the CV inputs as its outputs swing up to +/-10.5V, but it can modulate 

and influence other signals passing into Introductions.  

 

I used a Eurorack case that housed a collection of modules from different manufacturers 

but included two Ya Jerks and two Cascading Registers, as well as another module of mine, the 

R2Rawr. The R2Rawr is much like the signal path from CV1 and CV2 in the Cascading Register, 

except that it has five inputs for external signals. These are primarily intended to be gate signals, 

and from those gate signals, it generates stepped CV signals. Other manufacturers included 

Nonlinear Circuits, Doepfer, Make Noise, Noise Engineering, 4ms, ADDAC, Qu-Bit 

Electronix, Mystic Circuits, and Bastl Instruments.  
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Figure 50: The Modular Synthesizer Setup Used in the Installation  

(L) Patched (R) Unpatched 

 

There were three primary sound sources, a collection of oscillators from Noise 

Engineering (Loquelic Iteritas and Sinc Iter) and 4ms (Ensemble Oscillator). These ran into a 

number of effects modules, including one called Dark Matter from Bastl Instruments. This 

module was key in the patch and for the theme of feedback loops. It is a module inspired by no-

input mixer techniques and was designed in partnership with Peter Edwards of Casper 

Electronics. No-input mixing is a technique where instead of connecting external instruments to 

an audio mixer, you feed the outputs of a mixer back into itself in order to generate sounds from 

the resulting feedback loops. While I did use an external oscillator patched into the Dark Matter, 

it includes a send and return loop. With nothing patched, it simply creates a feedback loop; but 

you are able to patch from the output of the feedback loop to external effects and then back into 

the feedback loop. I did so with the help of a module called the Data Bender from Qu-Bit 

Electronix. This module was created to model some of the ways that audio equipment can fail, 

inspired by circuit bending. Patching a feedback loop into a module intended to amplify the 

inherent flaws in audio equipment leads to some interesting results.  

 

I also patched one of the oscillators into the Tapographic Delay from 4ms, a delay 

module which includes a feedback control to set the amounts of repeats in the delay line. I sent 
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the output of the Dark Matter into a module called the Make Noise Phonogene, a digital 

recreation of the tape machine as a musical instrument, as pioneered by Musique Concrète. This 

module can record audio into a buffer much like a tape machine and includes further controls 

that take it into the realm of granular synthesis. By periodically triggering the recording of loops 

of audio, I capture the result of the Dark Matter feedback loop. However, there are 

imperfections in the recording, and I modulated the parameters of the module to further change 

the resulting sound. It creates an imperfect loop of audio, altered through the process of 

recording and modulation.  

 

 Modulation of these audio processes are primarily done by the pair of Cascading 

Registers and the pair of Ya Jerks. Additional modulation came from the Nonlinear Circuits 

Sloths, a chaotic signal generator whose primary purpose is to generate extremely slow 

modulation and the Make Noise Maths, a function generator based on the Serge Dual Universal 

Slope Generator. While Ya Jerk is arranged in a two-channel feedback loop by default, the pair 

of Ya Jerks were connected in a larger feedback loop which included all four channels of chaotic 

signals in a self-influencing feedback loop. One of the outputs from the Cascading Register ran 

into a Make Noise Function, a smaller version of Maths. This module acted as a slew generator, 

smoothing out the stepped CV signals from the Cascading Register.  

 

The Cascading Registers’ clock outputs acted as a pair of master timing sources, sending 

timing information to the 4ms Quad Clock Distributor and the Olivia Artz Modular 

Uncertainty, two modules that take gate signals and alter them. The QCD is a clock 

divider/multiplier, which takes a clock signal and either speeds it up or slows it down based on 

an integer division of the incoming gate signal. The Uncertainty also affects a timing signal, it 

alters the probability that the timing signal will pass to one of its eight outputs. The top output 

has the highest probability of passing the input signal, while the bottom output has the lowest 

probability of passing the input signal.  

 

In addition to modulating the audio modules, several outputs from the modular 

synthesizer were patched into Introductions. Two outputs from Maths and two outputs from 

the Cascading Register (one smoothed by Function) were passed into the CV inputs on 
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Introductions. One gate output from each of the Cascading Registers and one of the outputs 

from the Uncertainty provided timing information for Introductions.  

 

 

Figure 51: Block Diagram of Signal Flow through the Installation 

 

The modular case sat in a cage in the middle of the installation space. This was to 

prevent access from the viewers and would-be thieves. However, there was some limited 

interaction between the audience and the modular synthesizer. On top of the case sat a piece of 

wood with six knobs able to be touched by the viewers. These were connected to the delay time, 

oscillator spread, the Maths CV output connected to Introductions, and two were connected to 

the Ya Jerk feedback loop between the two modules.  

 

In the previous chapters, I’ve discussed several systems that involve feedback processes 

in order to generate unpredictable results. One commonly seen iteration of feedback comes in 

the form of video feedback, where a camera is pointed at a monitor that is displaying the output 

of the camera. While it often shows up accidentally, it has been a tool for artistic expression and 

even a tool for the exploration of temporal and spatial dynamics. James P Crutchfield, in his 

paper Space-Time Dynamics in Video Feedback, published in 1984, outlines the possibilities for 

using camera feedback to model different dynamical systems and reaction-diffusion systems.  
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Video feedback is a self-influencing system that takes its output and feeds it back into its 

input. Due to imperfections in electronics, lenses, and monitors, the feedback path is nonlinear, 

an essential element for chaotic behavior. The camera takes an image, converts it to electrical 

signals, and passes it to the monitor, which interprets the electrical signals in order to reconvert 

them to an image. This repeats over and over in a continuous loop. Each time it passes through 

this loop, it is altered, and each part of the image influences the areas around it. Parameters 

within this loop can be altered at will by the operator, such as rotating the camera, adjusting 

focus, zooming in or out, changing brightness on the monitor, or other image processing 

techniques.  

 

The processes involved in a video feedback system are what is known as a dissipative 

dynamic system. The energy in the system is lost to small amounts of error and freedom and the 

system contracts over time. Often, the video feedback creates an attractor, either a fixed point, 

limit cycle, or a chaotic attractor. The fixed-point attractor rests in equilibrium, while the limit 

cycle oscillates in a predictable repeating pattern. The chaotic attractors amplify noise within 

regions of the system while remaining globally stable, a mix of stability and instability. These 

attractors may be disturbed and may or may not return to their previous form, or morph into 

entirely new attractors, depending on the amount of change over time. Crutchfield’s writing 

describes an analog system of video feedback, but feedback also exists in the form of digital 

feedback, as I described in the previous chapter.  

 

In my installation, I used a combination of camera and node-based feedback loops in 

order to generate visual complexity and interest. There were several node-based feedback loops, 

one connected directly to the chaotic shapes and the other composited with the output of a 

webcam. A switch object selected between this second feedback loop and the output of a 

displace object that combined the output of a complex video oscillator device, chaotic 3D shape, 

and the processed output of the webcam. The webcam was connected to cache TOP which 

stores the information of an incoming video signal. By adjusting the cache position with a 

smoothed random signal, the timing of the video signal can be adjusted, scrubbing back and 

forth through time, creating a sort of simple glitchy video delay. 
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Figure 52: Top-down View of the Installation 

 

The output of the TouchDesigner project was sent to a pair of projectors mounted on 

the ceiling of the installation space. The webcam was pointed at the wall where one of the 

projectors displayed its image, creating yet another feedback loop. When viewers walked up to 

the modular synthesizer cage, they interrupted the feedback loop and influenced it simply by 

walking through the space.  

 

The signals interpreted by Introductions were sent to several destinations within the 

project. One of the Maths outputs controlled the switch that blended between the displaced 

signal and the feedback loop. The smoothed output from the Cascading Register selected which 

chaotic equation was displayed, while the signal from Uncertainty reset the equations to clear the 

buffer and start the process over. The value parameter on both HSV adjusts on the feedback 

loops were also modulated, as well as the displace weight on the displace TOP.  
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Figure 53-57: Stills from a Video Recording of the Installation 

 

 

 

There were several issues that I ran into while setting up the installation. Originally, I had 

a webcam and a CCTV camera both connected to the patch to capture video from two angles, 

but the computer in the installation space did not accept two camera inputs. Several of the 

chaotic equations caused the program to crash and/or behave erratically. The sound interface in 

the space was not clearly labeled, and I had issues connecting the outputs of the modular 

synthesizer to the four-channel sound system. The projectors in the space were not as powerful 

or bright as the one I tested with, causing the image to be washed out when displayed. Despite 

these setbacks, the installation was successful in an artistic sense from my view. 

 

 You can see a video recording of the installation on my YouTube channel at this link if 

you’re reading this online https://youtu.be/YqrN4Up7czA or by searching ‘omiindustriies 

Feedback Loops All the Way Down” if you’re reading a printed version. 

 

  

https://youtu.be/YqrN4Up7czA
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Chapter 6 Conclusion 

The universe tends towards entropy, becoming more and more disordered as it 

continues to spread out. Chaos is all around us, influencing our daily lives. If you forgot to turn 

the lights off when leaving the house, and go back to turn them off, you might be delayed in 

your journey to work to narrowly avoid an accident on the freeway; one example of how small 

changes to the initial state of your day may result in large changes as you go about it. The 

weather, the contractions of our heart muscles, the fluctuations of stock prices, all examples of 

chaos that influence our everyday lives.  

 

Is there determinism in the universe? I would argue that the trends of entropy knock off 

any sort of predefined fate that may lie in store for humans. Small perturbations echo out of 

even the smallest of choices, spreading like ripples. These ripples in the pond of reality come 

into contact with the 8 billion other ripples that each human contributes to the overall direction 

of the flow of this metaphorical water. Constantly shifting, we influence each other in a species-

wide feedback loop.  

 

However, some things that do appear to us as random and disordered have an 

underlying order to them. The human mind and imagination, which sometimes seem 

unbounded, have limits to what we can conceptualize. We can know something is true, but 

sometimes it just doesn't feel on an emotional level to be accurate. As I mentioned, a 32-bit 

LFSR would take years to repeat itself if you left it running 60 times a second. Sometimes, what 

we perceive as random simply has to do with the limits of human perception; numbers and 

timescales that defy our conceptions of reality. Chaos, as I’ve explored, has an underlying 

determinism, rules that define its behavior. There is a certain amount of unpredictability, these 

rules appear simple but occupy the realm of complexity that baffle and intrigue many researchers 

and artists.  
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Modular synthesizers as they exist today are uniquely suited for harnessing chaos for 

artistic applications. Eurorack, in particular, is ripe for experimentation due to the plethora of 

manufacturers in the marketplace. There is a small and dedicated contingent of makers that seek 

to delve into the realm of chaos, producing modules that lie outside the confines of traditional 

synthesis. You couldn't dedicate the capabilities of a factory city in China to produce chaotic 

synthesizers, there’s just not the market for it.  

 

Composing with modular synthesizers sometimes is more of a two-way street. Instead of 

the composer strictly inputting their compositional style onto sheet music or a DAW, a linear 

input to output, a modular synthesizer may behave in ways that seem erratic or esoteric, 

nonlinearly creating music. This is, of course, dependent on the modules used, as some are 

particularly well suited for imposing a compositional paradigm onto them. My compositional 

processes, however, are dependent on a give-and-take relationship with the electronic synthetic 

behavior of chaotic and pseudo-random elements. Can electricity have a will? Are components 

imbued with the powers of thought? Is my modular synthesizer alive in some non-organic sense? 

In a scientific sense, probably not; but giving up some artistic will to a machine, a non-human 

entity, can result in surprisingly organic feeling outcomes.  

 

Is there inherent meaning in this exploration of the unpredictable? I’m not sure, but 

perhaps the process is the meaning. Taking the time to look deeper into some of the underlying 

systems that exist both in the real world and the abstract, delving into the depths of esoteric 

electronics and complex simplicity. Perhaps this thesis has raised questions in you, the reader, 

about things you may have taken for granted or have not examined. I hope to have left you with 

both conclusions and curiosity. There is no end to this process, no final questions explored 

completely, no grand unifying truths. Simply, I leave you with the words of James Gleick: 

 

“Where chaos begins, classical science stops.” 
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