
 i

California Institute of the Arts

Sensitive Dependence: An Exploration

of the Unpredictable

by

Naomi Mitchell

A thesis submitted in partial fulfillment for

the degree of Master of Fine Arts

Herb Alpert School of Music

Music Technology: Interaction, Intelligence & Design

 ii

2023

 iii

Supervisory Committee

Committee Member

Committee Member

Committee Member

Committee Member

 iv

 v

Abstract

This thesis examines controlled randomness, how to generate it, how it behaves, and its

applications. After beginning with the history and context of these methods, this thesis focuses

on ways of generating pseudo-random and chaotic behavior. Through the research and

development of hardware and software implementations of unpredictability, I highlight the

possibilities of audio and visual compositions that rely on attenuated uncertainty. The hardware

consists of a collection of modular synthesizers conceptualized, designed, and realized by me

during the past two years. Software comes in the form of explorations of chaotic and pseudo-

random algorithms that includes different implementations of chaotic equations. Finally, the

thesis addresses applications of these concepts through an interface between a modular

synthesizer and a computer, the creation of larger feedback systems using elements explored in

previous chapters, and examples of audio and visual work created with the various methods

explored herein.

Randomness offers artists and musicians a way of creating works directly influenced by a

non-human entity in the form of code and circuitry. While not conscious in a way recognized by

biological entities, these systems of uncertainty seem to contain a life of their own. A

collaboration between artists and algorithms brings new possibilities to their work, creating new

possibilities that would otherwise not exist without the other. The intention of the user informs

the application and direction of the randomness, but not necessarily the end behavior of it. But

the artist always has the option to disregard the influence of the uncertain, something the

algorithm lacks in its limited behavioral agency. We look primarily not at ‘true randomness’ but

rather controlled randomness, pseudo-randomness, feedback, and chaos in the mathematical

sense.

 vii

Acknowledgments

I would like to thank my wife, Lauren, for her undying support during my time at grad school

and beyond. I would like to thank Eric Heep and Mike Leisz for their extensive assistance with

coding and for being good sounding boards. Thank you to Audrey and Sophia, who listened to

me talk about chaos and synthesizers even if they didn’t understand all of it. I would like to

thank Jim and Loren for supporting me creatively and intellectually. Thank you to Andrew Fitch

for your research and advice. Thank you to the agents of chaos, benevolent and otherwise.

 ix

Contents

Abstract .. v

Acknowledgments.. vii

Contents ... ix

List of Figures .. xi

Chapter 1 Introduction .. 1

Chapter 2 History and Context ... 7

Chapter 3 Hardware .. 37

Chapter 4 Software .. 57

Chapter 5 Applications ... 76

Chapter 6 Conclusion .. 87

Bibliography .. 89

 x

 xi

List of Figures

Figure 1: Clara Rockmore Playing the Theremin ... 9

Figure 2: Block Diagram of the RCA MKII ... 10

Figure 3: Early Version of the Moog Modular Synthesizer .. 12

Figure 4: Buchla Model 165 .. 14

Figure 5: Buchla Model 265 .. 16

Figure 6: Buchla Model 266 .. 17

Figure 7: Paperface Serge at CalArts .. 19

Figure 8: Paperface Serge Smooth and Stepped Generator and Noise Source 20

Figure 9: Doepfer A-149 .. 23

Figure 10: Make Noise Wogglebug .. 24

Figure 11: Music Thing Modular Turing Machine ... 25

Figure 12: Mutable Instruments Marbles .. 26

Figure 13: Nonlinear Circuits Brain Custard .. 27

Figure 14: Lorenz Attractor ... 30

Figure 15: Method for Generating a Logistic Map with Moog Modular Synthesizers 33

Figure 16: Dan Slater's Hypothetical Chaos Module in the Buchla Format 35

Figure 17: omiindustriies Cascading Register ... 38

Figure 18: XOR Truth Table... 40

Figure 19: Data Feedback Path with XOR Logic Gates ... 41

Figure 20: Oscilloscope showing Clock and CV Signals 1-3 .. 42

Figure 21: Block Diagram of the Cascading Register .. 44

Figure 22: Video Noise Generated by the Cascading Register .. 45

Figure 23: Schematic of the Shift Register, Clock Input, Data Inputs, and Buffer Sections of the

Cascading Register ... 45

Figure 24: Schematic of the Digital to Analog Converters and CV outputs 46

Figure 25: Schematic of the Clock Oscillator ... 47

Figure 26: Schematic of the Power Sections ... 48

Figure 27: omiindustriies Ya Jerk Front Panel ... 50

Figure 28: Oscilloscope View of Red Z, and Blue X, Y, and Z ... 52

 xii

Figure 29Oscilloscope View of Blue X, and Red X, Y, and Z ... 52

Figure 30: Schematic of the Blue Channel .. 53

Figure 31: Schematic of the Red Channel ... 54

Figure 32: Three Versions of the Lorenz Attractor At 500 Iterations .. 60

Figure 33: Lorenz Attractor at 25,000 Iterations.. 61

Figure 34: Rössler Attractor .. 62

Figure 35: Equations for Sprott's Cases A-S ... 63

Figure 36: 3D Views of Cases B, C, F, and H .. 64

Figure 37: Gen~ Implementations of Cases B, C, and D .. 65

Figure 38: Max/MSP Controls outside of Gen~ Codebox ... 66

Figure 39: View of the Entire Max/MSP Patch ... 67

Figure 40: The Main Processing Code ... 68

Figure 41: The Particle Processing Code ... 69

Figure 42: Python Initial conditions ... 69

Figure 43: Main Processing Code For Drawing ... 70

Figure 44: Equations for Cases E, F, and G, and a nested elif Tree with Each Case 71

Figure 45: TouchDesigner 3D Rendering ... 72

Figure 46: TouchDesigner Feedback path .. 73

Figure 47: Cases A, B, and C ... 74

Figure 48: View of the Installation ... 76

Figure 49: Introductions in Front of Small Modular Synthesizer .. 77

Figure 50: The Modular Synthesizer Setup Used in the Installation ... 79

Figure 51: Block Diagram of Signal Flow through the Installation... 81

Figure 52: Top-down View of the Installation ... 83

Figure 53-57: Stills from a Video Recording of the Installation .. 86

 xiii

 1

Chapter 1 Introduction

 One of the things that have most captured my attention and drew me towards

technology as a focus is controlled randomness and unpredictability. It has been ingrained in my

artistic and musical practice over the past ten years, providing a structural backbone that informs

other elements. My focus has primarily been on modular synthesizers, although I’ve expanded

and incorporated software such as Max/MSP. The idea of a give and take with a musical or

artistic system where I, as the performer, have a hand in guiding the course of a piece, but

without the certainty that comes from composing every single element, captivates me. A system

organized around uncertainty, a machine with its own agenda, an electronic ghost who steers the

course of a tangled mess of patch cables or software connections.

In this thesis, I will explore different methods of generating controlled unpredictability

from several angles. First, I dive into the history of modular synthesis and an overview of

randomness in terms of theory and technology. Then I get into Eurorack modular synthesizer

modules I designed and built, how they operate, and my design goals. After that, I move on to

different ways of generating and analyzing randomness in software. Finally, I explore merging

the worlds of hardware and software with custom-designed interfaces and practical applications

for these concepts with both audio and video.

I don’t focus primarily on ‘true randomness’ or completely uncorrelated systems of

random values or numbers but rather on controlled randomness, pseudo-randomness, feedback

systems, and chaos in the mathematical sense. Humans are pattern-seeking creatures. Our

ancestors looked at the uncorrelated light shining from stars galaxies away and saw whole stories

illuminated in the sky. Most music, and to a lesser extent visual art, is pattern-based. True

randomness lacks some of the repetition that humans find so pleasing. Chaos and pseudo-

randomness tend to form patterns that our brains find pleasing and latch on to.

 2

While chaos and randomness are often used interchangeably, there are a few

fundamental differences between the two. Randomness has no underlying order, and the

behavior of a truly random system is both non-deterministic and not influenced by previous

states of the system that creates it. If I flip a coin ten times, regardless of how many heads or

tails, the eleventh flip of the coin is not influenced by the previous ten. Chaos is mathematically

deterministic but displays sensitive dependence on initial conditions as well as sensitivity to small

perturbations to the system. This is well illustrated with a double pendulum. A pendulum

consists of a weight hung from a pivot point so that it may move and swing freely. A double

pendulum suspends a second weight from the bottom of the first pendulum, creating a second

pivot point. If you have two double pendulums and release them from ever so slightly different

positions, they will initially follow a similar trajectory. However, they begin to diverge in

behavior rather quickly and will follow different paths through their swinging motions, as if they

were dropped from wildly different initial positions. This is of course, until the forces of friction

and gravity deplete the energy and they come together again at rest.

Pseudo-randomness may appear random to observers, but the methods for generating

the seemingly random string of numbers or values is fundamentally deterministic. After a period

of time determined by the method of generating the pseudo-random signals, the string of

seemingly uncorrelated values repeats. However, if this happens over a long enough period, you

may not be consciously aware of it. For example, a 24-bit linear feedback shift register (LFSR) in

a maximal configuration does not repeat for a period of 16,777,215 timing increments, much

longer than the average person can keep track of.

My road to this program started in 2015, when I purchased my first Eurorack module. I

had been interested in electronics, starting in 2012 during the end of my undergraduate degree

with early experiments in circuit bending and noise boxes. Circuit bending is a process of

opening electronics, usually battery-powered toys or instruments, and making connections the

designers never intended, usually in order to glitch, corrupt, distort, or otherwise make results

that may be ‘unwanted’ in a commercial product. Pioneered by Reed Ghazala in the 1960s,

circuit bending saw a great deal of attention in the early 2000s, with artists such as Casper

Electronics, Gijs Gieskes, Get LoFi, Circuitbenders.co.uk, and many more creating circuit-bent

 3

instruments for electronic music artists. Though it saw a bump in popularity during this time,

many people who were involved in circuit bending began to move towards not just modifying

other people’s electronics but making their own.

This happened concurrently with the rise of Eurorack modular synthesizers in the early

2010s. Eurorack is a modular synthesizer format popularized by the German company Doepfer

in the 1990s that has become the most popular modular format, with hundreds of companies

making synthesizers that are all compatible with each other, sharing a common form factor and

power specifications. Many of these companies are just one or two people working out of their

apartments or garages, which is how I run my company, omiindustriies.

Due to the fact that a whole marketplace of modular synthesizers exists in the Eurorack

format, companies don’t have to contend with making an entire synthesizer. This allows

manufacturers, especially smaller ones, to make esoteric and specialized instruments. If a user

can get a great-sounding oscillator from one company, then another company can make a

distortion effect that uses an actual container of dirt without having to worry about making all

the other parts of a synthesizer. This is where I entered the landscape of Eurorack as a small

maker making unique and specialized instruments that fit very particular niches. I make them,

first and foremost, for myself, and selling them is secondary.

One of the unique things about the Eurorack marketplace is the willingness of the

participants to help each other. Much of the community comes from the realm of DIY, or Do It

Yourself, a practice of building, repairing, altering, or otherwise changing things without the aid

of so-called professionals, professional credentials, or even training. Many designers or engineers

freely put up their schematics, code, or even PCB layouts online. One company, Mutable

Instruments, which by the time you’re reading this does not exist anymore, is one of the best-

known and best-selling manufacturers of Eurorack modules, headed by lead engineer Émilie

Gillet. She made a conscious choice to make all the Mutable Instruments open source, to the

point where an entire marketplace has emerged that either directly clone the modules or redesign

the circuit board and front panel, so it takes up less space. I should note, of course, most

companies follow these open-source practices.

 4

The modules I examine are the Cascading Register and Ya Jerk, both of which were

developed and realized during my time at CalArts after years of research. The Cascading Register

uses what is called a shift register in order to generate pseudo-random voltages and binary

signals, known as gates, typically used in a modular synthesizer as timing events. Ya Jerk is an

implementation of a circuit researcher J.C. Sprott laid out in his paper “A New Chaotic Jerk

Circuit,” with some modifications to make it more suited to musical applications, influenced by

researcher and fellow Eurorack manufacturer Andrew Fitch, aka Nonlinear Circuits. These two

modules provide two different ways of generating unpredictability, with the Cascading Register

occupying the realm of pseudo-random and Ya Jerk sitting in the world of chaos.

 Another focus of the methods explored is generating complexity from relatively simple

building blocks. The Cases A-S equations, as defined by J.C. Sprott in his paper “Some Simple

Chaotic Flows” and explored in the software section, boil down to three differential equations

which define the X, Y, and Z parameters as they relate to each other over time. These equations

consist of five terms and two quadratic non-linearities or six terms and one quadratic

nonlinearity. A non-linear equation is a set of equations that share common variables but at least

one of the equations includes a nonlinear element. Linear refers to a straight line with a constant

change, whereas nonlinear functions change over time and bend or slope.

The custom designed interface, known as Introductions, went through several iterations

and continues to grow and evolve. Through all its forms, it boils down to a microcontroller

connected to jacks and potentiometers that take analog voltages and gate signals and convert

them into messages recognized by the computer, typically MIDI note on/off and CC messages.

It acts as a bridge between a modular synthesizer and a computer, allowing the two to

communicate. Most often when discussing an interface between a synthesizer and a computer,

people refer to a way to send MIDI information out from a computer and into the synthesizer,

but Introductions works the other way, allowing modulation and timing signals from a modular

synthesizer to control software on the computer.

Feedback refers to a self-influencing system that creates a loop by routing an output

back into an input. Anyone who has had their microphone pick up their speakers on a Zoom

call knows the screeching effect of feedback as the audio runs back in on itself, quickly building

 5

to a piercing tone. However, feedback does not only exist in the realm of video conferencing but

has many artistic applications. Creating a system that informs itself, particularly when containing

elements of chance, provides a treasure trove of creative possibilities. Many of the techniques

covered in the following pages require an amount of feedback in order to operate and may also

operate as one element in a larger feedback system.

Over the course of this thesis, I dive deep into these different techniques in order to

examine a microcosm of the possibilities of unpredictable behavior as it relates to audio and

video compositions. It is not intended to be an exhaustive overview of all the ways to generate

chaos and pseudo-randomness but rather to document my process of exploration over my time

at CalArts. This thesis seeks to provide context and analysis of these techniques generated

through experiments in both hardware and software to introduce a broader understanding of

stochastic processes, ones that can be studied for emergent patterns but not precisely predicted.

 7

Chapter 2

History and Context

In 1895 Thaddeus Cahill submitted the first patent for “The Art of and Apparatus for

Generating and Distributing Music Electrically,” for what we now know as the Telharmonium.

Although there were some early experiments in electronic music instruments, the Telharmonium

was arguably the first successful implementation of these concepts. Through electromagnetic

synthesis methods, it could transmit music over telephone lines in Victorian America. The name

comes from Telegraphic Harmony, hence Telharmonium. Concerts were not performed in

person, but rather over telephone lines, allowing listeners to tune in at home or in public places

equipped with telephones and loudspeakers.

Cahill’s dream was to make a ‘universally perfect instrument that could perfectly

synthesize tones with scientific accuracy’. He imagined that this instrument would make all

acoustic instruments obsolete, as it contained elements from existing instruments without the

defects he perceived were inherent to their design.

Instead of simple waveforms, which one might expect from an early electronic

instrument, the Telharmonium created complex harmonies from a series of sine waves generated

by electrical dynamos. These dynamos, or tone wheels, included the fundamental tone and six

ascending partials. The first version included 12 rotors spun at a speed determined by a belt-

driven motor and allowed for six octaves of range, covering the 12 chromatic notes of western

tuning. Using organ-style stops, a performer could select which partials were heard, making the

Telharmonium an early example of electronic additive synthesis. The pure sound generated by

the rotors, particularly in the first version of the Telharmonium, was particularly harsh, and so

 8

Cahill included filtering in the form of secondary inductors that softened the sound and made

them sound more pure.

There were three versions of the Telharmonium that Cahill made between 1895 and the

final concert of the Telharmonium in 1912. All three versions were gigantic, occupying entire

buildings in order to house all the parts necessary for the instrument. Unfortunately, the public’s

interest in the novelty of the Telharmonium waned after their initial delight in the sound, and

eventually, all three versions were sold for scrap parts.

As the vacuum tube proliferated in the early 20th century, radio engineers began

experimenting with different applications for them, and, quite by accident, discovered beat

frequencies and heterodyning oscillators. When two radio frequency waveforms of similar but

not identical frequency are played simultaneously, they combine and create a third frequency

based on the difference between the oscillators. Several engineers found this idea to be

inspirational, but none remembered as much as Russian engineer Lev Sergeivitch Termen, better

known as Leon Theremin.

One issue many engineers ran into with vacuum tube heterodyning synthesis was the

human problem. Meaning that as a person came close enough to actually perform on a vacuum

tube instrument, the capacitance of the body caused variations in the pitch of the oscillators,

causing instability. However, Theremin found an opportunity in this limitation, realizing that this

could be a way for a performer to interact with an instrument. Thus, the first Theremin was

born in 1917, also known as the Aetherophone. The original design included a foot pedal to

control the amplitude and a switch mechanism to control the pitch. However, by 1920, the

Theremin began to resemble the instrument we recognize today.

The Theremin includes an antenna and metal loop. The performer does not touch the

theremin but controls the sound by moving their hands in the proximity of the instrument. The

antenna controls the pitch of the sound, while the loop controls the amplitude or volume of the

sound. The sound is reminiscent of a violin, both in the timbre and the continuous sliding

between pitches that comes from moving your hand back and forth to control the sound.

 9

The Theremin was first shown at the Moscow Industrial Fair in 1920 to astonished

audiences. Vladimir Lenin was so infatuated with the Theremin that he requested lessons and

eventually commissioned 600 Theremins to be built and toured around the USSR.

In 1927, Leon Theremin left the Soviet Union for the United States. The Theremin

received a patent in 1928. By the 1930s, RCA began selling both kits and finished instruments to

the public. However, it was not seen by many as a serious instrument, but rather a novelty or

sound effect device. However, anyone who has seen Clara Rockmore perform on a Theremin

knows that it is a versatile and expressive instrument, although one needs a tremendous amount

of skill in order to master it.

Figure 1: Clara Rockmore Playing the Theremin

Jumping forward a bit to the mid-1950s, RCA was a huge force in the world of

electronic entertainment and technology. They produced everything from televisions to record

players and oversaw the production of the Theremin in the United States. There was some

interest in the company of analyzing the popular music of the time to figure out what made a

song a hit. They thought if they could scientifically deduce the properties of popular songs, they

could create a formula and crank out top 10 songs. They also wanted a way to circumvent the

cost of unionized orchestras, so they sought out alternatives. RCA engineers Harry Olson and

 10

Herbart Belar were tasked with this project, which would develop into a huge endeavor that

would change the landscape of music and synthesis.

The first programmable synthesizer was born from years of hard work and hundreds of

thousands of dollars. It took up an entire room in Columbia/Princeton’s computer music center,

known at the time as the Columbia-Princeton Electronic Music Center. The entire instrument

was essentially an analog computer designed for musical purposes.

Composers would punch holes in pieces of paper that the machine interpreted through a

series of relays as instructions on pitch, amplitude, envelope, and timbre for each individual note

in the composition. Each parameter had four columns of holes, making 16 possible values for

each parameter. The paper moved through the device at 100mm/sec and allowed for

compositions of up to 240BPM.

The Mark II version of the synthesizer added several features, including doubling the

number of oscillators from 12 to 24, high and low pass filters, noise, and glissando, which

opened compositional freedom to many more possibilities. In addition to the punch card-

controlled parameters, over 250 manually controlled sound shaping parameters were available,

grouped into clusters around the 10 19” racks that the instrument took up.

Figure 2: Block Diagram of the RCA MKII

 11

On both versions, the primary sound sources were vacuum tube oscillators that allowed

for four voice polyphony over several octaves. It also included a dual-tier record cutting lathe,

one with six cutting heads that could record two notes at a time. After recording on the first

lathe, the second lathe would then mix down and cut a final record of the programmed sounds.

However, by 1959, the impracticability of cutting individual records was replaced by a tape

recorder.

While the synthesizer was groundbreaking in a technical sense, it was not well received

by the public at large or many practicing musicians. The interface was obtuse, the sounds

simplistic, and was housed in a room in a university, unavailable to the general public. As the

transistor and integrated circuits began to proliferate and take over the market of electronics,

electronic devices, including synthesizers, could be made much smaller, cheaper, and more

reliable. While the Mark II still exists, housed in a small room at Columbia’s computer music

center, it has fallen into disuse.

In the early 1960s, a young man in upstate New York was selling kits for theremins and

tinkering with electronics. He would go on to become the name in synthesizers, even to this day.

That man, of course, was Robert ‘Bob’ Moog. With a $200 grant from Columbia University in

1963, Bob Moog collaborated with musician Herb Deutsch on the early design of what would

become the Moog Synthesizer.

The spark of genius in the Moog synthesizer was both the modular nature, where the

reprogramming was done with patch cables, and the voltage-controlled nature of the synthesizer.

Control voltage, or CV as it's commonly referred to, is a way of controlling modular synthesizers

using electricity. This allows composers to automate different parameter changes over time

without having to physically turn knobs. This can be the pitch, volume, or timbre of a sound, or

any other parameter within the system. The other primary signal within a modular synthesizer is

a gate signal. Gate signals only have two states, high or low, and are commonly used as timing

signals. In a Moog synthesizer, this is commonly generated by pressing down on a key on a

keyboard and then releasing it. This on/off signal could then be used to generate an event within

the modular synthesizer.

 12

One breakthrough of the Moog was the standard of one volt per octave scaling standard.

What that translates to is that an increase of voltage of one volt translates to a doubling of

frequency for an oscillator, which we know as an octave. This scale is exponential, as every

octave is double the frequency as the previous octave.

Figure 3: Early Version of the Moog Modular Synthesizer

Deutsch was responsible for the design of the ADSR envelope generators on the Moog

modular that shape sound over time. An ADSR envelope has controls for the time of an attack,

which is the time it takes to go from the off position to all the way on, making the difference

between the hard percussive hit of a drum or the slow build-up of a bowed sound such as a

violin. Decay is the time it takes to fall down from that top-most point in the signal to a level set

by the sustain. The envelope stays at the level set by the sustain control as long as a signal is

active or until a key is let go, and then the release parameter sets the time it takes for the

envelope to fade away completely.

Moog was able to patent only one part of his Moog modular, the filter, which is the most

recognizable part of the Moog modular. I’m sure you have heard the sound of a filter sweep;

that characteristic “waaahhh” sound of an analog filter being swept is iconic in many different

forms of music.

 13

Around the same time, on the other side of the country, the members of the San

Francisco Tape Music Center were looking for new ways to generate sounds for their

compositions. Started by Morton Subotnik and Ramon Sender, the Tape Music Center included

composers such as Pauline Oliveros, Steve Reich, and Terry Reilly. Subotnik put out an ad

looking for an engineer who could design new ways of synthesizing sound, moving away from

the large industrial laboratory equipment found in electronic music studios such as WDR Studio

in Köln, Germany, and GRM in Paris, France.

Don Buchla, a former NASA engineer, took Subotnik up on this project. With a $500

grant from the Rockefeller Foundation, he sent about designing what would become to be

known as the 100 Series Buchla system, although also sometimes referred to as the Buchla Box

or the Electronic Music Box. While Moog made modular synthesizers that sought to synthesize

sounds reminiscent of acoustic instruments and included a black and white organ-style keyboard,

Buchla wanted to create a new paradigm for creating electronic music. The Buchla system

utilized sequencers, randomness, and tunable touch plates in order to create synthesized sounds.

Moog used filters to subtract harmonics from harmonically rich waveforms such as sawtooth

and pulse, known as subtractive synthesis. Buchla, on the other hand, used additive synthesis,

taking harmonically simple waveforms such as sine and triangle and adding harmonics through

frequency modulation, wave folding, and audio rate amplitude modulation, commonly referred

to as ring modulation.

Another major difference between Buchla and Moog was the separation of signals. In

Moog and many other modular systems, all signals were treated the same, occupying the same

range of voltages and using a single connection. Buchla, on the other hand, separated the

modulation and audio signals in the system. Audio signals used tini-jax, a shielded cable similar

to 3.5mm/1/8th cables found on your wired headphones and were referred to as Performance

Modules. Modulation sources, referred to as Compositional Modules, used banana cables, which

included the added bonus of being able to be stacked, allowing one signal to be sent to multiple

destinations without using a specialized splitter module. While Moog and many other synthesizer

makers used a 1V/oct standard, Buchla instead implemented a 1.2V/oct, making a change of

0.1V correspond to a semi-tone.

 14

Buchla’s first forays into randomness came in the form of the Model 160 and Model 165

modules released in the 100 Series. The Model 160 was a noise generator with two pairs of

outputs. One pair output white noise, marked as flat, and the other pair output pink noise,

marked 1/F. White noise is named as such because it has equal power throughout the spectrum

of its bandwidth, containing a series of random phases, amplitudes, and frequencies within the

bounds of the signal. It was thought of as akin to white light which contains all other colors.

Other kinds of noise took the naming convention of kinds of light and their energy and while

the metaphor doesn’t exactly work, it is an easy shorthand for describing kinds of noise. Pink

noise does not have equal power density through its spectrum, but if examined on a

spectrogram, slopes downward at a rate proportional to the frequency of the noise. It is

sometimes called musically flat noise since the energy contained in each octave interval is the

same. The energy contained in the interval between 100 and 200Hz is the same as the interval

between 1000 and 2000Hz. The rate at which pink noise’s energy loss slopes is -3dB/octave.

Pink noise is generally regarded as more pleasant to listen to than white noise, as white noise is

perceived to have more high frequency content due to the way human hearing works. Many

devices sold as white noise machines actually produce pink noise.

Figure 4: Buchla Model 165

 15

The Buchla Model 165 was a two-channel random voltage generator that produced a

pair of uncorrelated random voltages whenever it received a timing signal. It is a self-contained

device with no user-accessible controls or any way to affect the output besides processing it with

another module later down the patch chain. These random voltages were stepped and not free

running, only generated or changed when the module received a timing signal. It used relays,

which function both to produce the stepped voltages from a noise signal, such as white noise,

and let you know when it receives a timing signal as the movement of the electro-mechanical

switches gives off an audible click when it engages. These relays were used to create a simple

sample and hold circuit.

A sample and hold is a device that is typically used to turn a continuous signal into a

discretely stepped signal. It has a timing input and a sampling input; when it receives a timing

signal, the sample and hold looks at the signal present at the sampling input and stores that

voltage level. It takes that stored voltage and passes it to the output, where it is held until the

sample and hold receives another timing signal. At this point, it looks at the sampling input

again, moves that voltage level into the sample and hold buffer, and the old voltage level is lost.

Typically, the voltage source on a sample and hold is noise, usually white noise, which gives a

random collection of uncorrelated values at the output, useful for true random sequencing. It is

the most common way of generating randomness in hardware as it fairly simple to implement

and produces continuous randomness. While that is useful for many contexts in synthesis, true

randomness is outside the scope of this thesis.

The models 160 and 165 were fairly simplistic, due to the fact that this was the mid-

1960s. None of the early Buchla designs used integrated circuits, known colloquially as chips, as

they were not in widespread use at the time. In lieu of that, all designs were fully discrete,

meaning they were composed of basic electronic components such as transistors, resistors,

capacitors, and diodes. Buchla was also charting unknown waters, producing a whole new

paradigm of generating electronic music and art, and early works in any new field seem lacking

and basic when looking back with hindsight. However, Don Buchla was not satisfied with the

original 100 series, and through the 1960s into the 1970s worked on a new collection of

modules, known as the 200 series. The 200 series would take the lessons learned from the 100

 16

series, both from an engineering and musical point of view, and expand on their functionality,

control, interaction, and reliability.

While there are many aspects of the 200 Series that could be explored deeply in their

own right, I’ll be looking specifically at two modules, the 265 and the 266, both named Source of

Uncertainty. The Model 265 was the first iteration, followed by the 266.

Figure 5: Buchla Model 265

The 265 contained three sections; noise, random voltage outputs, and stored random

voltage outputs. Noise comes in three varieties, low, high, and flat. A fourth iteration of audio

noise used in the module that does not have a direct output is a so-called ‘noisy triangle’

waveform. This is a 100Hz triangle oscillator that is synchronized to white noise in order to

produce an equal distribution of random signals. This noisy triangle is used in both sections of

the random modulation. The random voltage outputs, which would come to be known as

fluctuating random voltages, output a constantly changing random voltage whose period is

 17

determined by the Probable Rate of Change controls which vary the speed from 0.5Hz to 50Hz.

Each channel outputs a pair of signals and includes CV modulation over the rate of change.

The Stored Random Voltage section retained the timing signal input and pair of distinct

outputs seen on the Model 165, but added a unique feature, marked Correlation on the front

panel. The correlation control is simple in its design, basically just a cross fader that fades

between the incoming noisy triangle and the output of the random voltage fed back into itself.

This allows users to sculpt the direction of the chaos to make it more or less related to the

system’s previous state. Turned all the way up, the output is always the same as it just samples

itself. Turned all the way down, the output constantly changes based on the noisy triangle. The

sweet spots are in the middle, where the module influences itself but includes new information

to generate the random outputs.

While the 265 is a powerful source of unpredictability, the 266 is the better-known

Source of Uncertainty. It retains the three pairs of noise outputs and the fluctuating random

voltages from the 265 but adds several other function blocks. These are Quantized Random

Voltages, an Integrator, Sample and Hold, and a new version of Stored Random Voltages, which

shares the name from the 265 but is implemented in a completely different fashion.

Figure 6: Buchla Model 266

 18

The Stored Random Voltage section has a timing input and a probability CV input with

a pair of outputs. The outputs each have different probabilities of outputting a random value.

The top output produces signals that include an equal probability of output level. The

probability distribution for the bottom output is determined by the probability control and CV

input, favoring high, mid-range, or low values. This allows users to set the range of random

values generated by the module and therefore the amount of change that output contributes to

another module. The CV input allows the probabilistic distribution to be varied by an external

source, or even another signal from within the 266 itself if patched that way.

The Quantized Random Voltage section also includes a timing input and CV input over

the quantization level with a pair of related but separate outputs. These are marked 2^n and

n+1, which correspond to their distribution of random voltages. If the control is at 1, then n = 1

and both the n+1 and 2^n produce two possible values. 1+1 and 2^1 both equal two. If n= 3,

then n+1 outputs one of four possible values (3+1), while 2^n outputs eight possible values, 2^3

= 8. N+1 scales linearly, while 2^n scales exponentially. The n+1 output tends to favor the

values in the center of the probability distribution, while the 2^n has equal weighting across the

distribution. Both sections use what are called shift registers to generate their random, or

pseudo-random, signals. I’ll be going deeper into what a shift register is in the section dealing

with hardware implementations of pseudo-randomness. The 266 also includes an integrator and

sample and hold section. The sample and hold section creates a stepped voltage based on an

input signal and timing signal and the integrator smooths out incoming voltages.

An unconfirmed urban legend surrounds several red-paneled Buchla modules, that said

that the paint of these modules contained LSD. Rubbing your finger along them and licking it

was thought to give users an extra boost of creativity. Whether or not this synthesizer folklore is

accurate is up for debate, but it lends to the air of chaos that surrounds Don Buchla’s legacy.

In the 1970s, CalArts had several Buchla systems in their studios, but few had access. A

professor at the time, Serge Tcherepnin, wanted to create a more accessible brand of synthesizer

that retained the experimental nature of Buchla synthesizers. Tcherepnin and students Rich

 19

Gold and Randy Cohen eventually set out on a goal to make their own synthesizer. The first

Serge systems, as they would be known, were designed and soldered at a kitchen table in

Tcherepnin’s home. Although it started small, word eventually got out to CalArts faculty and

students, as well as other musicians. They set up a pseudo factory on campus, and for the fee of

$700, you got all the parts necessary to build a six-panel system, all put together on-site,

assembly line style.

Figure 7: An early ‘Paperface’ Serge at CalArts

The Serge paradigm breaks down the parts of synthesis into their barest elements. All

connections are made via banana cables, with a color coating of the jacks to indicate if the signal

is AC, DC, or a timing pulse. Serge modules often use technical terms to explain musical

concepts, which may be daunting to some musicians, but often the constituent elements are

relatively simple. Serge’s function generator, known as the Dual Universal Slope Generator

(DUSG), is one of the best-recognized parts. On a Moog system, you have an ADSR envelope

generator and on a Buchla, you have the Quad Function generator, both of which strictly

generate envelopes, usually used for varying amplitude or timbre. The DUSG, on the other

hand, can be used to generate envelopes, but can also be used as a slew generator to add

 20

portamento, add delay to a pulse signal, follow the amplitude of an audio signal, cycles like an

LFO or audio oscillator, or even be used as a simple non-resonant low pass filter.

Serge also pioneered the concept of patch programming. Patch programming uses one

of the outputs from a module patched directly to one of the inputs on the same module in order

to change the functionality. This could be making a function generator oscillate or turning a 16-

step sequencer into a 13-step sequencer.

The two modules that are most used for generating randomness within a Serge system

are the Noise Source and the Smooth and Stepped Generator, known as the SSG. The Noise

Source outputs white and pink noise, plus another noise source called S/H Source that is

inspired by the noisy triangle found on the Buchla 265. Some iterations of the Noise Source also

include a stepped random output generated by either an external timing signal or with an

onboard button.

Figure 8: Paperface Serge Smooth and Stepped Generator and Noise Source

 21

The SSG is broken down into three sections, Smooth, Stepped, and Coupler. The

Smooth section smooths out incoming signals at a rate set by a control, turning stepped signals

into smoothly varying signals. The Smooth section uses what is known as a track and hold. A

track and hold is almost the opposite of a sample and hold. Instead of only allowing signals to

pass to the output at clearly defined stepped intervals, a track and hold lets a signal present at its

input to pass freely to the output. That is until the track and hold receives a timing signal, at

which point it holds the level of the signal passing through it and does not let any signal through

until the timing signal goes inactive.

The Stepped section also includes a slew generator to smooth out signals but uses a

timing signal to generate a stepped signal based on an input signal using a sample and hold. Both

sections include cycle gate outputs, which, when patched into their respective inputs, allow the

sections to oscillate and be used for modulation or an audio source. The third section is the

coupler output which compares the signals present at the smooth and stepped side and outputs a

high signal when the stepped side is at a higher voltage level than the smooth side.

An SSG cannot be used on its own as a source of randomness, but it is a great way to

expand the functionality of the Noise Source. The Serge Fans website includes the following

suggestion on how to patch up a complex source of random modulation: Patch the S/H noise

signal into the in input on the stepped side, patch the coupler out to the timing input on the

stepped side and the in input on the smooth side. This creates stepped random voltages, smooth

random voltages, and random timing signals. Varying the controls of the smooth and stepped

sides affects the amplitude and timing of the random signals. There also exists a module that

does that already, known as the Random Voltage Generator, which outputs stepped, smooth,

and timing signals. If you opened your case and took a look at the circuitry behind the front

panel, you would notice that the RVG actually uses an SSG PCB, prewiring that common patch-

programmed configuration.

The rise of low-cost digital synthesizers in the 1980s led to many musicians casting off

their analog synthesizers in favor of the newer, more reliable all-in-one keyboard synthesizers.

Analog was seen as a thing of the past, a curiosity or steppingstone to the next iteration of

technology. However, in the mid-1990s, a German company named Doepfer had the idea of a

 22

new modular format, which came to be known as Eurorack. Eurorack refers to a standardization

that defines the size of the front panels, 3U or three rack units high, 128.5mm or just over five

inches. It also specifies the power requirements, both in terms of what voltages the power

supply generates and the connections from the power supply to the individual modules. The

connections between the modules are made on 3.5mm/ 1/8th inch monophonic cables, similar

to the ones seen on headphones, but only carrying a single signal instead of a dual/stereo one.

Since the mid-90s, Eurorack has become the dominant modular format, with well over

100 companies of various sizes making and selling their own synthesizer modules. With the wide

range of available modules, there is bound to be variation on existing paradigms and new ways

of synthesizing and modifying sounds.

Two modules that take direct or indirect inspiration from the Buchla 265/266 Sources of

Uncertainty are the Doepfer A-149-1 and the Wogglebug, originally made by Wiard with

versions from Make Noise, Erica Synths, After Later Audio, and others. The Doepfer A-149-1

can be seen as a direct link to the Buchla 266, stripping it down to its Stored and Quantized

random voltages. It adds controls to vary the amplitude of incoming CV for the N and

distribution for the Quantized and Stored random voltages, but otherwise is near identical, even

retaining the same panel graphics seen on the original Buchla module. It also has an optional

expander, which adds eight gate outputs based on the state of signals within the Quantized

Random Voltage section.

 23

Figure 9: Doepfer A-149

The Wogglebug was originally designed by Grant Richter of Wiard Synthesizers. It could

be seen as a continuation of the ideas laid out in the 265 Source of Uncertainty. It includes the

fluctuating smooth and stored stepped CV outputs, complete with correlation control, but adds

a third unique smoothed output, known as the woggle CV. This CV signal follows the smooth

random voltage and when it catches up to it, it bounces around that CV level with decaying

sinusoidal wiggles and woggles. The Wogglebug features an internal clock and clock input to

synchronize all outputs to a common timing signal. In addition to providing modulation, it also

includes audio-rate oscillators connected to the random CV with outputs for the Smooth VCO,

Woggle VCO, and the result of ring modulating the two VCOs against each other.

 24

Figure 10: Make Noise Wogglebug

In 2012, Music Thing Modular released the Turing Machine as a DIY project. While it

shares the name Turing from the pioneering researcher in computer science, Alan Turing, it is

not a true Turing Machine in the way Turing described it. Rather, it’s a random sequencer that

allows users to guide the direction of the randomness without being able to control exactly what

notes are played. One unique feature that has attracted many users is the large knob that adorns

the front panel, which allows you to interact with the randomness. By varying the position of the

knob, you can allow the module to introduce more or less randomness into the sequence, even

to the point where no new information is passed into the data buffer, and it repeats indefinitely.

This could be seen as harkening back to the correlation control on the 265 but implemented

differently. The length of the sequence is user definable between 16 and 2 steps long. Several

expanders are available, which add additional modulation outputs, timing signals based on the

state of the random sequence, or a simple matrix mixer hooked up to the output of the random

voltages.

 25

Figure 11: Music Thing Modular Turing Machine

Marbles from Mutable Instruments is a powerhouse of random timing and modulation

signals. It has three main sections; T, X, and Déjà vu. The T section controls the timing of the

module, generating three timing signals with variable rate and jitter, or the amount of

randomness in the clock timing. T2 is the steady clock signal set by the rate knob, while T1 and

T3 are controlled by a Bias knob. Bias has three modes: coin toss, random ratio, and kick/snare;

in all of these modes, the Bias controls the likelihood of the chance operation to affect T1 or T3.

The X section is a collection of modulation signals with variable range, probability distribution,

distribution bias, smoothness or steppiness, and quantization to a musical scale. Both the T and

X sections are connected to the Déjà vu section, which allows users to recycle the random data

within the module for looping behavior.

 26

Figure 12: Mutable Instruments Marbles

Nonlinear Circuits is an Australian-based modular synthesizer company run by Andrew

Fitch. Fitch has had a prolific career putting out strange and esoteric modules with personality

baked into their front panel and PCB silkscreens. Modules have names such as Poultry in

Motion, Bindubba, and Brain Custard, and while some fall into standard synthesis categories,

many exist outside of traditional behavior seen in synthesis. Fitch’s output has been prolific,

releasing a new design every month or two and running a periodic DIY synthesis workshop in

Perth. Much of the NLC output comes in the form of unique chaotic and random modules

which have been a large inspiration in terms of my own designs. We’ll explore the direct

inspiration from his work to mine in the hardware chapter.

 27

Figure 13: Nonlinear Circuits Brain Custard

Chaos

In the beginning, there was nothing. At least that’s how the story goes for many creation myths.

Chaos was seen as the prehistory of the world, a formless mass of nothingness that predated

humans or even gods. In Ovid’s Metamorphoses, the chapter on The Creation begins:

Before the ocean and the earth appeared—

before the skies had overspread them all—

the face of Nature in a vast expanse

was naught but Chaos uniformly waste.

It was a rude and undeveloped mass,

that nothing made except a ponderous weight;

and all discordant elements confused,

were there congested in a shapeless heap.

 28

Some god force, or nature, personified with he/him pronouns, took this formless state

of the universe and gave it direction and a recognizable form. This conception of chaos

seemingly influenced the Christian creation myth as well, as before the earth existed, there was a

formless void or abyss. The disorder of emptiness stands in contrast to the divine orderliness of

creation.

Chaos is often used as shorthand for disorder and confusion, something antithetical to

the rigors of science and mathematics. However, in the middle of the 20th century, researchers

began to apply the term to an emerging realm of thought that touched the realms of physics,

mathematics, and even the life sciences. Chaos theory can broadly be seen as studying the

seemingly random or unpredictable using deterministic rules. Its evangelists came from a diverse

range of fields but were all drawn in by the allure of the unknown.

One of the major researchers in the field was a man named Edward Lorenz, a

mathematician and meteorologist. In the 1960s, he was working at MIT, trying to figure out a

way to predict weather patterns. To many meteorologists, the idea of forecasting the weather

was not a realm of serious consideration, it was pure fantasy and conjuncture. The idea of a

system that could predict weather patterns had been a tantalizing pipe dream, something not

worth considering or spending time pondering. However, Lorenz was not one of these nay-

saying scientists.

Lorenz had constructed a crude weather simulation using a Royal McBee LGP-30

computer. It was a primitive thing, able to perform about 60 calculations a second, but it was

what was available at the time. He sketched out 12 rules to govern his hypothetical weather

system that determined the relationship between temperature and pressure, and then pressure

and windspeed. Every few minutes, the machine would print out a row of numbers, an

incredibly abstracted version of a day’s weather and winds. If you could decode this numeric

code, you could see the behavior of weather emerge, but never quite the same way twice.

Lorenz would eventually change the way the machine represented its findings. He picked

a variable and represented it by the letter ‘a’ with a certain number of spaces on either side. The

machine would print a series of ‘a’s to chart the changes of that parameter over time, moving

 29

back and forth across the printout. Up and down the ‘a’s marched, plotting information that

corresponded to some variable such as wind direction. There was an order to the seeming

disorder of it, recognizable patterns that didn’t even quite repeat.

In 1961, he wanted to get a better look at a particular behavior, so instead of starting the

simulation over from scratch, he started partway through. He typed the initial conditions of the

system by hand, and let the machine run unattended while he did something else in the office.

When he returned, he had a shocking discovery. The machine had not repeated the behavior he

saw beforehand but had an entirely new printout that deviated from the first. Slowly at first, but

as it progressed, the discrepancy grew and grew. He first thought something had malfunctioned

with his computer, as it often did, but he realized where the discrepancy came from.

The printout showing the numbers only printed the first three decimal places, but the

computer stored six decimal places in its memory. He had typed 0.506 instead of the 0.506127

stored in memory. This tiny deviation and its resulting behavior became known as one of the

fundamental aspects of chaos theory: sensitive dependence on initial conditions. The machine

was governed by deterministic rules, but small changes to the parameters led to great changes as

the system progressed. Lorenz saw a delicate order in his unpredictability, a complex system that

was nevertheless governed by specific laws.

Chaos theory is sometimes mentioned together with the Butterfly Effect. The butterfly

effect uses the metaphor that the simple flap of a butterfly’s wings in a remote location then

disturbs the weather and causes a tornado halfway across the world weeks later. This is the best-

known analogy of sensitive dependence on initial conditions.

Lorenz decided to keep pursuing complexity that arises out of a simplistic set of rules,

and eventually settled on a system of just three nonlinear equations. Rather than linear equations

that can be solved and plotted as a straight line on a graph, nonlinear equations are not

proportional and curved when graphed, if they can be solved at all. Only nonlinear equations can

be chaotic, but not all nonlinear equations are chaotic. Lorenz took a series of equations that

described convection, or the rising of a hot liquid or gas, and stripped them down to their barest

 30

elements so they no longer applied to real world conditions of convection. He kept the

nonlinearity, of course, but threw out much of the other elements that made up the equations.

Plotting the three equations in three-dimensional space creates what is called the Lorenz

Attractor. Fittingly, it almost appears to trace the shape of a butterfly’s wings as it rotates around

a bounded space never quite the same way twice. Lorenz documented his findings in a paper

entitled “Deterministic Nonperiodic Flow,” which researchers would cite with excitement for

years to come. The attractor was chaotic but not unstable. Noise or other perturbations would

not throw it off its long-term trajectory. The system was stable in the long term and when

viewed holistically, but any one point or on a microscale was unpredictable.

Figure 14: Lorenz Attractor

 31

A surprising place where chaos shows up is in an equation that models population

growth, known as the Logistic Map. Using a simple equation, biologists could map the rate of

change in a population of animals over time. The simplest way to calculate the change in

population is to take this year’s population, symbolized by the variable ‘n’ in this case, and then

multiply by a growth rate, ‘r’. Let’s say you start with a population of deer, n = 10, and a growth

rate of r=2. x(next) = n * r, or next year’s population is equal to this year’s population times the

growth rate. Then you repeat, so x is equal to the previous year’s x(next). The first year you

would have 10 deer, in year two you would have 20 deer, in year three, 40 deer, etc. Obviously,

this runs away quickly, doubling in size every year without any consideration for death by disease

or predation. The feedback loop is infinite, last year’s population becomes next year’s at a rate

with no decrease in population.

You need to reign in the numbers and account for mortality, and a simple change in the

equation does that. The new equation is x(next) = r*x(1-x), with the addition of (1-x) setting a

boundary to the growth. As x rises, (1-x) falls. With a growth rate under 1, the population

declines to extinction as it decreases every year. With an r growth rate between 1 and 3, the

population stabilizes, no runaway growth or decline. However, once r goes above 3, the

population begins to oscillate between two points, reaching a different kind of stability. This is

known as period double bifurcations, meaning it takes twice as long to repeat a value. As you

increase further, the population splits again into a four-year cycle, then eight, and then 16.

Eventually, when r is greater than r=3.57, the doublings give way to chaos. However, the chaos

does not exist at all r values over 3.57, as r approaches 3.83, there are three-period cycles, then

six, then 12, and then back to chaos again. In fact, hidden in the logistic map are periods of

every length. Hidden in the chaotic nonperiodic oscillations of the logistic map are islands of

order, small windows where the unpredictable gives way to the stable.

It should be noted that this way of calculating growth is a different type of equation than

the Lorenz attractor. The Lorenz attractor and equations like it are differential equations that

happen continuously over time, while the Logistic Map is a difference equation, with clearly

defined intervals. Like the difference between a smoothly moving second hand on a watch and

the minute hand that jerks forward a set interval every full rotation of the second hand. This

 32

works nicely when charting population growth in animals, as many animals have a distinct

breeding season and populations can be charted in yearly intervals.

In 1998, Dan Slater published a chapter in the Computer Music Journal entitled Chaotic

Sound Synthesis. This was one of the first instances of bringing the worlds of chaos theory and

modular synthesis in a formalized manner. Many early researchers in chaos theory used analog

computers in order to study chaos. In contrast to the much more popular digital computer,

analog computers have the capability to calculate continuous signals, whereas digital computers

store values as discrete and set binary intervals. Mathematical equations could be constructed

from operational amplifiers and common components such as resistors and capacitors.

However, due to the nature of physical parts, there are potential issues in small variations in the

characteristics of the materials making the parts. This is part of the reason that digital computers

have become the ubiquitous machine of the end of the 20th century into the 21st century.

One thing that attracted the attention of the authors of Chaotic Sound Synthesis is the

ability to interface many analog computers with hardware modular synthesizers. Many

computers output analog signals in the +/-10V range and are compatible with Buchla, Serge, or

Moog modular synthesizers. By programming analog computers, you can get any number of

behaviors, from simply scaling a voltage to complex chaotic equations not available in modular

synthesizers at the time.

One application was the construction of nonlinear filters that produce chaotic behavior.

These filters are sensitive to an incoming signal’s amplitude and waveform, not just its

frequency. Additionally, the nonlinear chaotic filters may produce frequencies not present in the

input signal. One chaotic system like a state variable filter is the Ueda attractor. The Ueda

attractor can be constructed out of a modified state variable filter where one of the inverting

stages is swapped for a circuit that produces an x^3 function.

While an analog computer can be included with a modular synthesizer in order to

calculate chaotic behavior, common synthesis elements in a modular synthesizer can also be

used to generate chaotic behavior. One example of this is an analog implementation of the

 33

logistic map discussed above. The author of the paper reordered the logistic map from x(next) =

r*x(1-x) to x(n+1) = k(xn - x^2n).

The implementation of the logistic map was created using several Moog Modular

modules, the 902 VCA and the 928 Sample and Hold. The 902 VCA is a voltage-controlled

amplifier with both linear and exponential response curves. A voltage-controlled amplifier can

be compared to automated volume control. Instead of manually turning up and down the

volume for a signal, a second signal can be used to automate the amplitude or volume level of

that signal. The 902 includes two inputs that are differential, where the signal present at the

lower jack is subtracted from the signal at the upper jack. When only using one input signal, the

two inputs correspond to inverting and noninverting behavior. Two 902s are used to generate

the x^2 term, while a third generates the k(x-x^2) term. The k or chaos level is controlled by the

CV input on the third VCA. All the VCAs are set to respond linearly to incoming voltages.

Figure 15: Method for Generating a Logistic Map with Moog Modular Synthesizers

 34

The inverted output from the third VCA is patched to the Moog 928 Sample and Hold

into the x1 input. The 928 provides a single-sample delay with a sampling rate set by the internal

clock oscillator. The x3 amplified output from the 928 is fed back into the VCAs. Adjusting the

slewing on the 928 alters the discretely time-stepped nature of the logistic map where instead of

jumping from one year or time interval to the next, it bleeds the intervals together. It’s not a

one-to-one recreation of the logistic map, but it probably makes for some interesting results.

With these considerations in mind, Slater proposes a hypothetical chaos module in the

Buchla 200 series format. The module includes a Poincaré control voltage processor, Ueda

attractor audio processor, and a pair of Logistic equation circuits, one for audio and one for

control voltages. The Ueda audio processor blurs the line between chaos module, audio filter,

and quadrature oscillator. A quadrature oscillator is an oscillator that generates two or more

outputs that sit out of phase with each other, usually 90 degrees. This is commonly implemented

with sine and cosine outputs. The attractor includes CV inputs to modulate the frequency, Q (a

shorthand for resonance, but labeled here as damping), and nonlinearity with a control for

exponent that ranges from 1-4. It includes lowpass, highpass, bandpass, and band-reject filter

outputs, with the lowpass and bandpass outputs sitting 90 degrees out of phase with each other,

acting as quadrature outputs.

 35

Figure 16: Dan Slater's Hypothetical Chaos Module in the Buchla Format

The Poincaré map takes two audio signals, by default the quadrature out of phase

bandpass and lowpass filters from the Ueda filter and generates a short pulse when the audio

signal transitions from negative to positive. This drives two sample and hold circuits with the

reference voltage coming from the input signal present at the Ueda filter. If only using a single

chaotic input signal, the Slater suggests an allpass filter, delay network, or dome filter in order to

generate a second chaotic signal, derived from the first. The Poincaré map would in this case be

used to generate the X and Y positions of a chaotic signal as they relate to phase space, which

could be easily viewed if used with an oscilloscope in XY mode. When running an oscilloscope

in XY mode, the oscilloscope takes two of its inputs and maps them onto a 2D space, with one

input corresponding to the horizontal axis and the other the vertical axis.

The pair of Logistic Map Circuits act as nonlinear waveshapers for both audio and

control voltage signals. When passing audio signals to the circuits, it generates outputs varying

from pulse waves to different subharmonic and chaotic noise signals. It does the same thing to

control voltages, but on a sub-audio level. The outputs would be stepped and not smooth,

because, as we’ve seen, the Logistic map operates in discrete time-stepped intervals.

 36

Dan Slater laments the fact that chaos theory, as a formalized concept, had not been

fully explored during the major heyday of modular synthesis development from the mid-1960s

to the early 1980s. While there is some overlap in the timelines, the idea of bringing the two

together was seemingly not on the minds of the early developers of modular synthesis. The

paper “Chaotic Sound Synthesis” was published in 1998, right around the time that Doepfer was

introducing their iconic Doepfer A-100 series Eurorack modular synthesis format. As I’ve

mentioned, the proliferation of this ubiquitous style opened the marketplace for radical

experimentation in synthesis techniques, including chaos. In the next chapter, I detail my

explorations in creating modular synthesizers that occupy the realm of chaos and pseudo-

randomness.

 37

Chapter 3 Hardware

I first released a hardware synthesizer in the spring of 2018, but that was after several

years of planning, research, trial, and plenty of error. The first module released was the Dual

Digital Shift Register, a simple shift register-based module that generates pseudo-random signals

after beginning work in 2016. In 2019, I released Illyana, a two-channel Boolean logic module.

Over the next few years, I went on to release the R2Rawr, lo-fi digital to analog converter;

Curtail, an audio to video level shifter; and the Quad Mute, a four-channel passive mute switch. I

also developed several modules that have not been released but have stayed in the prototyping

phase until I deem them ready for release.

When I enrolled in CalArts in 2021, I was in the middle of development of one of those

modules that I had been working on for almost two years at that point, and just figured out I

needed to do a massive revision to the design to make it both more stable and more chaotic. I

decided I needed a break, and my mind wandered to the design that would become the

Cascading Register.

The Cascading Register generates pseudo-random voltages and gates using what is called

a shift register. It was inspired by several different kinds of shift register implementations found

in both within modular synthesis and outside of modular synthesis. These are digital shift

registers, analog shift registers, linear feedback shift registers (LFSR), and runglers (a specialized

esoteric shift register implementation). It grew and evolved from the first Eurorack module I

designed to completion, the Dual Digital Shift Register (DDSR).

 38

Figure 17: omiindustriies Cascading Register

A shift register is a series of simple data storage elements, known as flip-flops, connected

sequentially, which share a common clock or timing information. Typically, shift registers are

digital, meaning that the information they store occupies two states, off or on, 0 or 1, high or

low. A flip-flop is a simple data storage device that stores the state of an external data source,

typically binary on/off information. I’ll be talking about a serial-in-parallel-out shift register, but

there are several other implementations of the basic shift register concept. For simplicity’s sake,

I’ll just call the SIPO shift register a shift register.

A shift register has a data input connected to the first flip-flop and a clock input

connected to every flip-flop in the chain. On the rising edge of a clock pulse, the shift register

looks at the data input and moves that state into the first stage of the shift register. If the data

input is high, it moves a high state into the first stage, and if it’s low it moves a low state into the

first stage. Concurrently, whatever data was in the first flip-flop gets shifted to the second stage,

 39

whatever was in the second stage moves to the third, and so on. When a bit of information

reaches the final stage of the shift register, it is shifted out and lost. This is the basic function of

a digital shift register.

A rungler is a particular implementation of a shift register, designed and invented by

Dutch engineer Rob Hordijk. He wanted to make a module that created unpredictable signals

but was disillusioned with just simple noise generators. In the 1980s, he experimented with

CMOS (complementary metal-oxide-semiconductor) circuits, a family of digital logic circuits. A

rungler circuit is a particular implementation of a shift register, coupled with a pair of oscillators.

One oscillator provides the clock information and the other is the data source. The last three

bits of the eight-bit shift register are fed into a DAC circuit to create a waveform that Hordijk

describes as a “Stepped Havoc Wave.” Hordijk was inspired by Dutch composer Jan Boerman,

who described all sound as appearing on the continuum between a pure sine wave that contains

only the fundamental frequency and no harmonics, and pure noise, which contains every

frequency, amplitude, and phase relationship of sound; even going so far as to say that all sound

is contained in the static hiss of pure uncorrelated noise.

The rungler’s stepped havoc wave is routed to modulate the frequency of both the clock

and data oscillators to create a feedback loop. The clock and data oscillators also include triangle

wave outputs, which in addition to the stepped havoc wave, is routed to modulate the frequency

of the opposing oscillator.

The most famous implementation of the rungler is in the Benjolin, a DIY workshop

instrument Hordijk designed to be built in workshops. It also appears in his Hordijk modular

system, and the Blippoo Box. The Benjolin design has been adapted by several other Eurorack

companies, including After Later Audio and Epoch Modular, as well as standalone synthesizers

by companies such as Macumbista. One element missing from some of the adaptations, but not

all, is the ability to substitute external signals for the internal clock and data oscillators.

Another aspect that informed the design of the Cascading Register came from the world

of cryptography, a linear feedback shift register, known as an LFSR. An LFSR is a common way

to generate pseudorandom numbers in both hardware and software. Their simplicity means

 40

they’re easy to implement and can be constructed without using thermal noise used for analog

noise to generate randomness. They are deterministic and given the same initial state and

feedback configuration will generate the same string of pseudo-random values. An LFSR takes

two of more of the stages of the shift register, known as taps in this case, and combines them

through logical operations before routing the resulting signal back to the data input, creating a

linear feedback path of binary information. Usually, the logical operation is a Boolean XOR

logical operation. Boolean logic takes binary signals and compares them against each other,

turning the output of the logic on or off based on the states of the inputs. The output of an

XOR logic gate is on if one input or the other are on, and off if both or neither are on. Put

another way, the output is on if the inputs do not match, and off if the state of the inputs do

match.

Figure 18: XOR Truth Table

A maximal length shift register configuration refers to the configuration of taps that

create the longest string of values and vary based on the length of the shift register. The length

of the sequence can be calculated as 2^n-1, or two to the length of the shift register, minus one.

It’s minus one because if all the stages of the shift register are off, no data could be recycled,

creating an invalid state. So, in an eight-bit shift register, the maximal length is 255 steps. In a 32-

bit shift register, however, the length is 4,294,967,295 steps long. If you calculated the numbers

sixty times a second, it would take over two years before it repeated itself.

 In an eight-bit shift register, the configuration of taps that creates the longest string of

pseudo-random values takes the eighth, sixth, fifth, and third stages of the shift register and

XORs them together. The Cascading Register is not a maximal length shift register, as only the

eighth, sixth, and fifth stages are used as feedback taps. One could patch up a maximal length

LFSR by manually patching the third stage into the external data input.

 41

In addition to the external data input and the three feedback taps that supply data, a

button on the bottom of the module allows users to manually enter data into the data stream.

This button, labeled Seed, gives a direct manual input to influence the course of the shift

register. However, it is in the XOR path, meaning that pushing the button may or may not enter

a high state into the first stage of the shift register, depending on the other parts of the data

path. In order, the eighth stage is XOR’d with the sixth, that is XOR’d with the fifth, that is

XOR’d with the seed button, and finally that resulting signal is XOR’d with the external data

input.

Figure 19: Data Feedback Path with XOR Logic Gates

Another kind of shift register that inspired the Cascading Register is an analog shift

register. An analog shift register is essentially a series of sample and hold function blocks. An

analog shift register marries the function of a sample and hold with the idea of a shift register. It

is a series of sample and hold function blocks. Instead of losing the original sampled signal, on

every clock pulse, that voltage level passes from one sample and hold to the next, creating what

is known as an arabesque musical form, where a melody passes down a line of voices. It was first

implemented by Barry Schrader with help from Dr. Fukushi Kawakami, known to his friends as

“Fortune.” They collaborated on a series of modules to extend the functionality of Schrader’s

Buchla synthesizers, known as the Fortune Modules. Kawakami made four modules for

Schrader, Control Voltage Smoother #1, Control Voltage Smoother #2, Control Voltage Matrix

 42

Gate, and the Analogue Shift Register. The first commercially available version of the Analog

Shift Register was made by Serge Tcherepnin and included in Serge Modular System.

The Cascading Register contains no sample and holds but was inspired by the concept of

an analog shift register. The three control voltage outputs available on the Cascading Register

come from the state of the gate signals that pass through the eight-bit shift register. CV1 is

determined by the first four gates, CV2 comes from the middle four gates, and the last four gates

inform CV3. Each set of four gate signals runs into a simple digital-to-analog converter, creating

a stepped CV signal determined by the state of the gates. As I mentioned before, the Cascading

Register contains no sample and holds, but the core idea of a set of information passing down a

series of outputs comes from the realm of the analog shift register.

Figure 20: Oscilloscope showing Clock and CV Signals 1-3

The Cascading Register has three stepped analog control voltage (CV) outputs, whose

output level is tied directly to the three white knobs on the panel. CV1 and CV2 pass through

attenuverters before their outputs, and CV3 has an associated attenuator. An attenuator can be

thought of as analogous to a standard volume control on a stereo. All the way counterclockwise,

the signal level is off, and as you turn clockwise, the voltage level increases until it reaches its

maximum level. Attenuverters, on the other hand, are off when the knob is in the center of its

range. Turning clockwise increases the voltage level in the positive domain, while turning

 43

counterclockwise inverts and increases the voltage level in the negative domain. For example, if

a user patches CV1 or CV2 to the pitch input of a voltage-controlled oscillator, turning

clockwise increases the pitch of the oscillator, while turning counterclockwise decreases the

pitch of the oscillator.

In addition to the three analog CV outputs, the Cascading Register includes individual

outputs for each stage of the shift register. The zero-indexed labeling goes from ØØ to Ø7

arranged vertically from top to bottom. The outputs are all binary gate signals, typically used in

modular synthesis as timing signals. Constructing a simple pseudo-random rhythm is a matter of

patching the first output to a kick sound and a snare from a lower gate output, which will

generate a call-and-response rhythm offset by the selection of the gate output. While gate signals

are most commonly used as timing signals, they also work as modulation signals. The sharp

onset and near-immediate decay makes them excellent as modulation sources for percussive

sounds, creating a defined accent in timbre or volume when the gate is active.

The Cascading Register also comes equipped with an internal voltage-controlled clock

oscillator, normalized to the clock input. Normalized in this case means an internal connection

from an output to an input on the same module, that is interrupted when you patch a cable into

the input jack. The clock oscillator is a square wave oscillator that ranges from sub-audio to low-

audio frequencies. The output of CV3 is also normalized to the CV input of the clock oscillator,

creating a feedback loop that generates a clock signal that slows down and speeds up depending

on the output voltage from CV3. This normalized connection between CV3 and the CV input

on the clock oscillator is the reason that CV3 used an attenuator instead of an attenuverter. It’s

much easier to zero out the modulation of an attenuator than an attenuverter, as the attenuator’s

off position is a function of the mechanical connection on the potentiometer. An attenuverter’s

off position is close to the middle of the range of the potentiometer, but finding the exact off

position is a difficult art.

 44

Figure 21: Block Diagram of the Cascading Register

While the Cascading Register features an internal clock oscillator, it also includes an

input for an external clock source. This accepts signals from sub-audio to audio, up into the

range used in video synthesis, well above the range of human hearing, entering the realm of the

scanline speed on a television. While this is not a necessary addition for audio synthesis

purposes, and increased the overall cost of the module, it allows the Cascading Register to fit

into the world of video synthesis, becoming a complex noise generator and rough down sampler

for video.

 45

Figure 22: Video Noise Generated by the Cascading Register

So far, I’ve described the Cascading Register in terms of the front panel, but I turn now

to the interior design of the module, examining the schematic and design of the printed circuit

board.

Figure 23: Schematic of the Shift Register, Clock Input, Data Inputs, and Buffer Sections
of the Cascading Register

 46

This first sheet shows the main shift register implementation. I used a CD4015 dual

four-stage shift register connected together with a common clock and the four data bit (QD) out

from the A shift register into the B shift register. The clock and data inputs include an LM319

comparator with a reference voltage of approximately 0.5V. The shift register outputs binary

signals, with the fifth, sixth, and eighth XOR’d together as seen in this collection of logic gates.

In addition, these binary signals run into a pair of CD4050 hex buffers before reaching the

outputs, in order to ensure a steady +5V signal level. I used transistors in order to buffer the

signals going into the LEDs which allow signal to flow through the LEDs to ground when they

receive an active signal.

Figure 24: Schematic of the Digital to Analog Converters and CV outputs

 47

Next, we have the three digital to analog converter circuits. I used R2R digital to analog

converter circuits which involve two resistor values, R and 2R, or 10K and 2 x 10K or 20K. CV1

and CV2 pass into these attenuverter circuits. I used a pair of 100K resistors connected to the

potentiometers, which gives a slight curve to the linear response of the potentiometer, giving

more of a center 0V spot to allow users to zero out the modulation. CV3 simple runs through

the potentiometer connected to ground. The LM6172 ICs require a 1K resistor in the feedback

path when used as a buffer.

Figure 25: Schematic of the Clock Oscillator

The clock oscillator uses a CD4046 Phase-Locked Loop configured as a Voltage

Controlled Oscillator. C18, R13, and R14 determine the frequency range of the oscillator. The

voltage present at pin9 VCOIN controls the frequency of the oscillator within this frequency

range. The clock rate potentiometer and external CV input are summed in a non-inverting op-

amp before passing by a pair of diodes that ensures the signal running into the IC does not go

above +5V or below 0V.

 48

Figure 26: Schematic of the Power Sections

The final part of the schematic is the power section. This shows the power connected to

each of the ICs with 0.1uF capacitors connected to ground to ensure clean power is supplied.

The Eurorack power connector is SV1 which supplies the +12V, -12V, and ground signals.

+12V and –12V pass through D1 and D2 which ensure that if the pin header is plugged in

backward that the module isn’t damaged. F1 and F2 are ferrite beads which add filtering to the

power. C3 and C4 are polarized capacitors that also filter the power rails. The

TPS7A4901DGNR is a low noise and low dropout voltage regulator that takes the +12V power

rail and converts it to a +5V signal. SV4 and SV5 are pin headers connected to the shift register

gates, clock signal (either internal or external), +12V, -12V, and ground. These are for an

expander board that would allow the Cascading Register to connect to other modules that

expand the functionality. At present, this is not included in the Cascading Register, but there are

plans for future modules.

My next goal for developing a Eurorack module was to create a chaotic circuit. I had

been working on a self-designed chaotic signal generator as part of a multi-function module I

mentioned I needed a break from, but I wanted to simplify and create a single purpose module

instead of one with four function blocks. I primarily looked at the work of J.C. Sprott, Ian Fritz,

and Andrew Fitch during those planning stages. But how does one go about creating chaos in

circuitry?

Constructing a chaotic circuit involves creating an analog computer that solves the

chaotic differential equation. This is done with operational amplifier (op-amp) integrators, as an

 49

integrator's output voltage is the input voltage's negative integral. An op-amp integrator consists

of an op-amp whose positive input is grounded with a feedback path from the output to the

inverting input with a capacitor between the output and the input. A resistor comes before the

feedback loop. The ratio of the size or capacitance of the capacitor and the resistance of the

resistor determines the rate of change of the output voltage. The voltage level is determined by

the time a signal is present at the input that allows the feedback path across the capacitor charges

and discharges. As the op-amp is configured with a negative-feedback path, it produces an

output voltage that attempts to maintain a virtual ground at the inverting input. Virtual ground

refers to a signal that is at the level of ground, a 0V reference voltage, without being connected

together.

The result is a linear ramp of increasing voltage at a rate set by the RC

(resistor/capacitor) ratio that increases until the voltage reaches saturation or the maximum

output voltage of the op-amp. If the input signal to the integrator is a square wave, the integrator

will create a triangle wave that follows the square wave at a slew rate determined by the RC ratio.

In the case of chaotic applications, the integration creates the integral of the signal passing into

it. However, a nonlinear element is necessary to create a chaotic circuit. This is because a linear

system cannot be chaotic. This nonlinear element comes in various forms, but the simplest is a

diode. A diode is an electronic component whose primary function is to allow current to flow in

one direction. The forward direction of a diode offers close to no resistance, while the reverse

direction of the diode provides near-infinite resistance. An ideal diode has two states, on or off,

allowing current to flow or not. When the diode is off, the current flow through the diode is

zero; when on, the voltage drop is zero as the current flows freely. However, the world does not

operate in an ideal way. The current does not change linearly as the voltage increases across a

diode. By inserting a nonlinear element, such as a diode, into the feedback path of several

integrators, you get a nonlinear differential equation in circuitry.

Ya Jerk is a two-channel chaotic signal generator based around Jerk chaos, as described

in J.C. Sprott’s paper, “A New Chaotic Jerk Circuit” and as modified by Andrew Fitch of

Nonlinear Circuits for use in the context of modular synthesizers. It includes two channels that

by default are arranged in a self-influencing feedback loop but can easily be disconnected from

each other. The term jerk in jerk chaos comes from physics and describes how an object’s

 50

acceleration changes with respect to time. Jerk is the third derivative of position after velocity

(first derivative) and acceleration (second derivative).

Figure 27: omiindustriies Ya Jerk Front Panel

The two channels of the module are arranged side by side, the left being the Blue

channel, and the right the Red channel, based on the color of the associated LEDs. The controls

are “Rude”, “Jeez”, “Seriously?”, and “What The Heck?”, chosen specifically for their vague

meanings with regards to synthesizer functions, but playing on a theme of an argument. The

module was conceived as a chaotic argument between two similar but slightly different chaotic

entities, and by argument, I refer to the self-influencing feedback loop the two sides are arranged

in by default. “Rude” and “Jeez” control the shape of the chaos, while “Seriously?” And “What

The Heck?” Control the rate of integration within the feedback loop and relative speed of the

chaos. In many settings, the chaos is non-periodic, meaning it doesn’t oscillate at a set frequency

like an oscillator, but rather oscillates up and down on a path that does not repeat. In other

settings, the module oscillates at a periodic rate.

 51

Each side has three outputs, X, Y, and Z, which each behave slightly differently. I

changed the naming convention of the X, Y, and Z outputs from their labeling in Sprott’s paper

based on an early version of Fitch’s design of the Jerk chaos circuit for modular synthesizers. In

Sprott’s version, the X and Z are swapped. After asking Andrew Fitch why he made that change,

he mentioned that the X output of a chaotic signal generator is often the most irregular while the

Z output is the smoothest. The names originally come from defining an X variable and then

calculating the two successive derivatives of that variable. When replacing the X with a Z, the

results are the same, but X is the third derivative of Z instead of the other way around. The

nonlinear equations that describe this Jerk chaos system when written as three first-order

differential equations are as follows (written twice to show both variable configurations with

Sprott’s equations on the right)

Ż = Y or Ẋ = Y

Ẏ = X or Ẏ = Z

Ẋ = -X - Z - 10^-9[exp(y/0.026) - 1] or Ż = -Z - X - 10^-9[exp(y/0.026) - 1]

I got more into first-order differential equations in the software section of this thesis as I use

them to generate different chaotic signals in code, so a more detailed explanation is forthcoming.

The variables with dots over the variable correspond to the time derivative, or that value over

time.

The outputs sit somewhere between an LFO (low-frequency oscillator) and a fluctuating

random voltage seen by smoothing out a stepped random voltage from a sample-and-hold. The

X outputs are the most complex, creating a sharp onset and decaying sinusoidal bounces. The Y

outputs are less violent and complex, but still retain a dynamic movement as they oscillate. The

Z outputs are the smoothest and most sinusoidal, but still display chaotic behavior and a less

violent bouncing behavior.

 52

Figure 28: Oscilloscope View of Red Z, and Blue X, Y, and Z

Figure 29: Oscilloscope View of Blue X, and Red X, Y, and Z

The outputs are bipolar, meaning they go both into the realm of positive and negative

voltages. The outputs have a wide voltage range that changes depending on the settings of the

controls and range up to a little more than +/-10V. For many applications this is a little too wide

a modulation range, so users are advised to keep an attenuator handy for processing the voltage

level down to a more manageable range.

 53

 As I’ve mentioned, by default, the two sides are connected in a feedback loop, through

normalization into the Influence inputs. The X output from the Blue channel is normalized into

the influence on the Red channel, while the Z output from the Red channel is normalized into

the Influence input on the Blue channel. The influence inputs include attenuverters to scale and

invert the incoming modulation. The Influence inputs don’t change the frequency of the chaos,

but rather sort of inject energy into the internal feedback path of the chaos. If users input gate or

trigger signals into the Influnce inputs, the chaos roughly syncs to the incoming signals, but does

not produce perfectly on-tempo modulation you might find on another modulation source with

a dedicated clock input such as a tempo-synced LFO, envelope, or stepped random voltage.

These inputs don’t work particularly effectively with audio rate signals but will work with a wide

range of sub-audio signals. The Jerk chaos could work as a crude audio filter with a different

configuration of parts, as was mentioned in the Slater paper, but that was not the goal of this

particular project.

Figure 30: Schematic of the Blue Channel

 54

Figure 31: Schematic of the Red Channel

Now, moving from the front panel to the interior circuitry. These two schematics show

the design of Ya Jerk. As you can see, the two sections are nearly identical, but the orientation of

the LED is swapped between the two sides and there are a few changed resistor values. This is

the cause of the differences between the outputs of the Blue and Red channels. The LED

orientation of the Blue channel is consistent with the original Sprott paper and the first available

version of the Fitch design. The orientation of the Red channel comes from the newer version

of the Fitch designs, such as Stooges, a three-channel jerk chaos module. The resistor values for

R5/R7 and R20/R22 are different, also giving slightly different behavior. This comes from an

earlier version of the Ya Jerk where the integrator capacitors were different values, 1uF and

10uF. The 10uF capacitor configuration was originally chosen to allow the two sides to run at

different rates but was scrapped because the chaos had dead spots where the outputs would

completely turn off. While the capacitor values were changed to match, the resistor values were

kept as is to add small variation in the overall behavior.

Three op-amps are configured as integrators, while the fourth op-amp acts as an

inverter. An inverter takes the state of a signal passing through it and changes the gain to –1,

swapping its polarity without adding or removing any amplitude. While an oscillator traditionally

increases in frequency as you turn the potentiometer in the clockwise direction, Ya Jerk works

 55

the other way, slowing down as the “Seriously?”/ “What the Heck?” Controls are turned

clockwise. This is because those controls set the rate of integration, so turning clockwise

increases the rate of integration, much like you would see on a slew generator or portamento

control.

The “Seriously? / “What The Heck?” Controls determine the shape of the chaotic

outputs and sit in a feedback loop that do not contain the nonlinear LED elements. The shape

of the chaotic signals does not just mean how smooth or jagged they are but also includes the

amplitude of the signals, as the amplitude of the outputs is not constant in all potentiometer

positions.

Each of the stages of the integration pass into op-amps that buffer or amplify the

outputs before their final output jacks. The X outputs are simply buffered, meaning that no

additional amplification is added to their output voltage. The Y and Z outputs travel through

non-inverting amplifier configured op-amps. A non-inverting amplifier is a way of adding

amplitude to a signal while retaining the phase of the signal. The gain can be calculated as 1+

R2/R1, where R1 is the feedback resistor and R2 is the resistor connected to ground. If the two

are equal, as with X and Y of the Blue channel, the gain is two. The Red Y has a gain of 2.5,

while the Red Z has a gain of three. For the Blue X and Red Z, a resistor is placed between the

output of the op-amp and the normalization into the Influence CV input jacks, as well as before

all the output jacks. This is to prevent the accidental problem of connecting two outputs

together, which may damage a module if not protected by a simple 1K ohm resistor.

The Influence CV input section uses the same attenuverter design as the Cascading

Register but on the input stage rather than the output stage. The amount of change that the

influence input imparts on the behavior of the module was surprising when first testing the

module. Even just slight changes to the attenuverter settings cause massive changes in behavior

as the chaos continues to move through its attractor orbits, thus relating to one of the

fundamental elements of chaos, sensitive dependence to initial conditions.

 56

In the next chapter, I will explore chaos on more of a mathematical level in software. By

implementing chaotic equations in code, I can better visualize their behavior using computer

graphics software capabilities that I do not have access to in analog hardware.

 57

Chapter 4 Software

In order to better illustrate the idea of how chaos behaves over time and sensitive

dependence on initial conditions, I chose to not only implement chaos in hardware, but also in

software. This started as experiments in Max/MSP and Processing, before adding

TouchDesigner and Python. While implementing chaos in a hardware modular synthesizer

enables me to use it in a rather straightforward musical application, I chose to also explore chaos

in software to better visualize and attempt to understand its behavior in a more straightforward

environment. While the oscilloscope shots shown in the previous chapter allow you to see how

the chaos moves over time in one dimension, I lack the hardware to properly display chaos in

more than two dimensions. However, by solving chaotic equations in software, I could plot the

X, Y, and Z parameters in a 3-dimensional environment.

The first place I wanted to start was with the Lorenz attractor, as it is one of the most

ubiquitous and well-known examples of chaotic behavior. Not only that, but its simplicity makes

it more accessible to someone without a background in mathematics, such as me.

The Lorenz Attractor can be described with the following equations

dx/dt = s(y - x)

dy/dt = -xz + rx - y

dz/dt = xy - bz

With the typical parameters being s = 10, r = 28, b = 8/3. The variable d_ over dt

indicates the change of this variable over time. These equations are plotted continuously and

each time the equation is solved, the resulting parameters are fed back into the equation and

describe a rate of change.

Where did these equations come from though? Well, as I mentioned in an earlier

chapter, Lorenz came across these three equations that describe convection, or the rising of hot

 58

gases or liquids. He had originally been working on a set of 12 equations as they related to

weather in his simplified simulated world, but after months of working, had narrowed it down to

three equations that correspond to three dimensions. After all, humans are not well adapted at

visualizing phenomena in 12 dimensions. The narrowed down equations correspond to the

stream function, change in temperature, and deviation in linear temperature.

dx/dt = s(y - x) corresponds to the stream function. The variable “s” (or sometimes

written as “p”) corresponds to the Prandtl Number, a dimensionless number that is used to

indicate the ratio of viscosity of a fluid to thermal conductivity. This number changes with the

fluid being studied. For example, sodium has a Prandtl number of 0.01, water has a Prandtl

number of 6.90, argon has a Prandtl number of 22.77, and xenon has a Prandtl number of

674.91. The standard variable in a Lorenz equation is 28, so much greater than water and

somewhat greater than argon. The lower than Prandtl number, the more effective the given gas

or liquid is at conducting heat.

dy/dt = -xz + rx - y corresponds to a change in temperature. The variable “r”

corresponds to the Rayleigh Number, another dimensionless number that relates to heat transfer

in convection. It can be calculated by multiplying a Prandtl number by the Grashof number. The

Grashof number is a ratio of the buoyancy and viscous forces in a fluid. In this equation, -xy is a

nonlinear term, an essential element in chaos.

Finally, dz/dt = xy – bz corresponds to the deviation in linear temperature. This

equation has to do with the ratio between the height of a fluid layer with the width of the

convection rolls, or the rolls of counterrotating air in the atmosphere that sit approximately

horizontal to the earth. In this equation, the ‘xy’ element provides the nonlinearity.

When plotted, these simple equations result in a complex shape that traces the outline of

two points in space, poetically mirroring the shape of a butterfly’s wing. Could the smallest flaps

of a butterfly’s wing in the jungle result in a hurricane two weeks later? We can’t know for sure,

but what is known is the small perturbation in initial state of a system as varied as the weather

can result in huge changes over time.

 59

Over time, a Lorenz attractor settles down into a discernible and well-recognized shape.

Given the same exact initial condition, the system behaves the same way and unfolds tracing its

way through space. However, if the initial conditions are varied, even slightly, the results may be

wildly different.

I decided to investigate that by plotting a Lorenz attractor, not for an extended period of

time, but on a small timeline, say 500 iterations of the equations. For this application, I chose to

implement it in TouchDesigner with the script SOP providing Python code in order to calculate

the attractor over time. The initial conditions of X, Y, and Z are generated randomly every time

the script is called with a range of –0.5 to 0.5. While this seems like a small range of initial

conditions, the concept of sensitive dependence becomes very clear on this timescale. Below are

several images of the resulting 500 iterations of the Lorenz attractor.

 60

Figure 32: Three Versions of the Lorenz Attractor At 500 Iterations

As you can clearly see, they look strikingly different from each other when plotted at this

scale. If you let these run for, say 25,000 or 50,000 iterations, they would appear more closely

related. Granted, each iteration would, in fact, be unique and behave differently, but when

viewed on a large enough scope, the behavior begins to settle down into an almost predictable

pattern as it traces its way through its faux-butterfly wing path. Below is an example of the

Lorenz attractor when iterated at 25,000 steps showing this behavior, as seen in an earlier

chapter

 61

Figure 33: Lorenz Attractor at 25,000 Iterations

A paper caught my eye while browsing J.C. Sprott’s website, entitled “Some Simple

Chaotic Flows.” His goal with the paper was to study the existence of some of the simplest

chaotic equations. Lorenz’s conjecture was that the Rössler attractor was the simplest example of

a chaotic equation, in the algebraic sense rather than the processes that the equations describe.

The Rössler attractor can be described as

dx/dt = -y - z

dy/dt = x + ay

dz/dt = b + z(x - c)

Where typically a and b = 0.2 and c = 5.7

 62

The Rössler attractor was proposed by Otto Rössler in 1976 as a way to produce chaos

in a manner mathematically simpler than the Lorenz attractor. In contrast to the Lorenz

attractor, it only has one nonlinearity in it. The nonlinearity appears as z*x in the equation dz/dt

= b + z(x - c). When comparing the attractor to the Lorenz model, the most obvious difference

is that the Rössler attractor only revolves around one point, whereas the Lorenz attractor has

two points of attraction. In contrast to the Lorenz model, the Rössler attractor does not come

from a simplified physical phenomenon, but purely from the realm of mathematics.

Figure 34: Rössler Attractor

The Rössler and Lorenz attractors are composed of seven terms and either one or two

quadratic nonlinearities respectively. It’s incredible the amount of complexity that is formed

from these simple differential equations solved over time. But could chaos emerge from simpler

 63

equations? Sprott ran a series of computer-aided experiments on differential equations with six

or fewer terms that returned positive Lyapunov exponents.

A Lyapunov exponent measures how two points that start near each other change over

time. By near, I mean incredibly close to each other, almost on top of each other. The Lyapunov

exponent is represented by λ. If the Lyapunov exponent is less than zero, a negative number, a

system falls into periodic behavior. The more negative the number, the more stable the system

is. If the Lyapunov exponent is equal to zero, you get a fixed point or an eventual fixed point. If

greater than zero, the small distances between two points grow indefinitely over time and you

get chaotic behavior.

After examining several thousand potential chaotic equations, and throwing out the vast

majority of them, Sprott came up with 19 examples of chaotic flows comprised of either six

terms and one nonlinearity or five terms and two nonlinearities. He named them simply Case A

through Case S. Cases A-E have five terms and two nonlinearities, and cases F-S have six terms

and one nonlinearity. Many equations with six terms and two nonlinearities were discovered

during this process, but this experiment was tied to algebraic simplicity in chaos and were thus

discarded. No cases of systems with five terms and one nonlinearity or cases with less than five

terms were found in this study.

Figure 35: Equations for Sprott's Cases A-S

 64

Complex behavior from simple building blocks and rules has and continues to be a point

of interest for me in my research and artistic practices. I decided to recreate the chaotic

equations in the Max/MSP coding environment Gen~. This was firstly because of the ability to

load gen~ patches onto a Daisy microcontroller, but also because gen~ provided a sample-level

way to manipulate code that lent itself to patching up differential equations. The equations could

also be developed into a Max for Live (M4L) device in order to bring chaotic modulation into an

Ableton Live environment.

I paired the gen~ code with Processing code in order to visualize the resulting chaos in

3D space. While Max/MSP has the capability to run the code and display it in 2 dimensions

using the scope object, Processing includes the ability to plot the resulting signals in 3

dimensions with the additional parameter of color to better illustrate the behavior of the chaos.

Below are a few examples of the resulting chaos.

Figure 36: 3D Views of Cases B, C, F, and H

 65

The equations are selected by a dropdown menu which outputs an integer and a bang

message. The integer from the dropdown menu selects which equation is active by a nested ‘if’

statement on input two. The bang message has two purposes. One is to send a 1 and then a 0

with a 25ms delay to input three; and the other is to select a random number between 0-1000,

which is then scaled to a number between –0.03 and +0.03. When input three receives a 1, it

resets the X, Y, and Z values to a new value. This new value is determined by the three random

objects added to an initial value of 0.05, which Sprott indicated in his paper was a good initial

condition. By adding this small amount of variation, the initial values are close to that provided

working initial condition, with enough variation to generate different behavior every time the

equation is selected.

Here is an example of some of the code in the Gen~ codebox. Commented out are the

equations source from Sprott’s website, which just act as reference for the resulting code. The

xgain, ygain, and zgain lines set the overall amplitude of the resulting chaos, which I tried to

contain to the range of +/-1, but with some room for deviation. I used the variable “a” in the

cases to represent the integers in the chaotic equations, in other equations I used additional

variables, with the labels “b” and “c”, although one could use any variable names they see fit.

Figure 37: Gen~ Implementations of Cases B, C, and D

 66

The equations given could not be calculated in the form listed on Sprott’s website, so

they were refactored. For example, in Case C, dx/dt = yz is changed to x = x + dt * (y * z).

This could be broken down to x is equal to itself plus some time factor (dt) and multiplied by the

y and z variables. After that the Y and Z variables are calculated, and the new X, Y, and Z

variables are fed back into the equation, replacing the old values. This process is repeated

continuously to generate the resulting chaos.

Figure 38: Max/MSP Controls outside of Gen~ Codebox

The speed of the chaos is determined by a pair of sliders, one with a range of 0-20, and

the other with a range of 0-499, which are added together. This corresponds to Hertz or cycles

per second; giving users the ability to set the chaos to behave as audible noise or sub-audio

modulation. The slider values are multiplied by 44.1, or the sampling frequency, and passed into

a phasor~ object, a delta~ object, and finally a <~ object before running into the gen~ codebox

to run the equations. The dt or time constant was left static at dt=0.05. I ran into issues with

three of the equations and they were thus left out of the final selection of equations. Cases I, L,

and Q tended to fly off into infinity and crash the program.

I then converted the resulting output from the gen~ code, which was not output as

numbers but Max’s signal format, usually used for audio signals. I rescaled it from –1.0-+1.0 to

0-1.0, ran it into a meter object which turned it from a signal to a float, and then rescaled it back

 67

from 0-1.0 to –1.0-+1.0. These floats were then packed, prepended, and sent as OSC messages

to Processing.

Figure 39: View of the Entire Max/MSP Patch

Processing is a coding environment that is very well suited to visual applications. It uses

a simplified version of JavaScript with a focus on generating visuals from code. It is a flexible

tool and is suited for both 2D and 3D applications. The Processing code is broken down into

two parts, the main code and an external function in order to keep the code concise. The canvas,

or area where the visuals are generated, has a width and height of 1000 pixels and the code runs

at 60 frames per second.

 68

Figure 40: The Main Processing Code

The function, named Particle, scales the OSC messages from –1.0 and 1.0 to the width

and height of the canvas divided by four in order to keep the signals within the bounds of the

drawing area. Naturally, the X, Y, and Z signals from Max are mapped to the X, Y, and Z axis of

the 3D space. Additionally, the X, Y, and Z signals get mapped between 0-255 in order to

generate red (X), green (Y), blue (Z), and alpha (also Z) for the drawn stroke. The draw function

takes the XYZ points in space and the resulting color and generates a series of circular points

that trace the shape of the chaos in space.

 69

Figure 41: The Particle Processing Code

From there, I chose to explore these simple chaotic equations in TouchDesigner,

another visual programming environment, but much more suited to real-time visualization.

Using the Script SOP, I wrote external Python code in order to run the same equations I

explored in Max/MSP and Gen~. TouchDesigner also has the added benefit of a suite of video

processing capabilities, which I harnessed for artistic applications. The results of my experiments

in coded chaos generate visually interesting results, which appeal to me not just as someone

interested in the behavior of chaos but also as a visual artist.

Figure 42: Python Initial conditions

 70

First to initialize the code, I generated an empty array to store the points of the XYZ

signals. The XYZ starting positions are randomized in a similar way to the Max MSP, but inside

the code instead of externally. I chose to allow control over the dt time variable, as well as the

number of points drawn by the program and the active equation. The Python code took the

empty array and populated it with the XYZ points from the equations. Then took the previous

point and a new point and drew a line between the two of them. When the array of points,

defined by the NumPoints parameter, reaches the maximum number of points, the last point in

the array is lost. It continuously updates, tracing the results of the equations in a 3D

environment. An external operator, the Timeline CHOP is called to generate the code in real

time, much like the Phasor~ object in Max.

Figure 43: Main Processing Code For Drawing

 71

There are slight variations in how the code is written due to the differences between

Python and Gen~. The largest difference is the omission of the “dt” parameter within the

equations. This happens outside the functions when the next point is calculated from the

previous point in the array. The equations also are formatted slightly differently; instead of the x,

y, and z variables equaling each of the equations, I used xp, yp, and zp to store the state of the x,

y, and z variables before passing those values back into the equations. Unfortunately, many more

of the equations tended towards infinity or otherwise crashed after running for a short while. I’m

unsure of what caused these equations to behave erratically, I would imagine that

TouchDesigner is not intended to solve differential equations in real time.

Figure 44: Equations for Cases E, F, and G, and a nested elif Tree with Each Case

The results of the Python script then pass into a Geo COMP, which takes the drawn

points and puts them in a 3D environment. Always paired with the Geo in TouchDesigner are

the Camera and Light COMPs, which act much in the way you might expect, lighting and

capture a view of the geometry. A Line MAT gives the drawn points more of a defined shape

and a light purple color. The camera rotates around the drawn chaos points, varying the view

over time and making it more dynamic. These elements all combine in the Render TOP, which

takes the 3D environment and converts it to 2D images.

 72

Figure 45: TouchDesigner 3D Rendering

After the Render TOP, the resulting 2D image passes into a Composite TOP. This TOP

combines two or more video signals together in a variety of operations, from multiplying them

to taking the XOR to burning the color of one signal onto another. I composited the render

with a Feedback TOP. As the name implies, the Feedback TOP is used for generating feedback

loops. By default, in TouchDesigner, you can’t connect and output back into an input further

back in the signal chain; but the feedback TOP is the exception to that rule, specifically designed

in order to generate feedback loops.

I’ve discussed different implementations of feedback loops during the course of this

thesis. The TouchDesigner internal feedback loop is just one example of a video feedback loop.

The other is a camera/monitor feedback loop, which I will discuss further in the next chapter.

The feedback TOP in TouchDesigner offers certain functionality not available in physical

feedback loops but has certain limitations as well. The feedback loop takes the output and routes

it back to the input, creating a self-influencing feedback loop.

 73

Figure 46: TouchDesigner Feedback path

The source for the feedback loop is a Null TOP on the other side of the composite

TOP, an empty container that can store information. The Feedback runs into a HSV Adjust

TOP, or Hue, Saturation, and Value adjuster. Any changes between the feedback TOP and the

null where it takes information from changes the behavior of the resulting image. Changes may

include rescaling, coloring, rotating, or otherwise affecting the behavior of the signal passing

through the loop.

I made only slight adjustments to the saturation and value multiplier, adding just a little

bit of saturation and subtracting just a little bit of value. This is to make sure the feedback

doesn’t get out of hand but adds a bit of interesting variation to the resulting signal. The

composite TOP is set to difference, outputting the difference between the incoming chaotic

figure and the resulting feedback loop. This results in trails following the curls of the chaos as it

traces its path through the 3D space. With the addition of saturation enhancement, the result is

textured and colorful, tracing where the 3D movement overlaps with the 2D feedback.

The final result of this process is like the results from the Max/MSP and Processing, but

intentionally different and distinct. While the actual drawn shapes lack the vibrant colors

generated from Processing, the addition of the feedback and constantly turning camera angle

adds interesting variation that separates the two chaotic operations. Below are some of the

resulting images.

 74

Figure 47: Cases A, B, and C

 75

I took the experiments in TouchDesigner and decided to apply them to a larger project,

not just as a self-contained image or video generator, but as part of an installation. The next

chapter details my applications of both hardware and software and chaotic applications.

 76

Chapter 5 Applications

In order to bring together the worlds of hardware and software, I chose to exhibit both

in an installation entitled Feedback Loops, All the Way Down. The goal of the installation is to

showcase some of the ways to harness chaos and unpredictability in an audio/visual artistic

context. The name comes from a mantra repeated in order to center and calm me down when I

become overwhelmed by anxiety. The universe is a series of complex and interconnected

feedback loops that influence every aspect of our lives and the existence of everything in the

universe.

Figure 48: View of the Installation

 77

The installation combines both audio synthesis from a modular synthesizer and video

synthesis and manipulation from TouchDesigner. The goal was to combine and explore the

techniques of software chaotic signal generation, creating unpredictability in hardware, and how

to apply audio and video feedback for artistic applications. However, the hardware and software

elements are not separate, but brought together with the help of a converter named

Introductions.

Introductions is a small interface that turns analog CV and gate signals into information

that a computer can understand. It grew and evolved several times starting in the fall of 2021

and to this day is still being refined. The idea was to be able to interface a modular synthesizer

with a computer in order to extend the functionality of both. In the current iteration, it takes CV

and gate signals and turns them into MIDI note on/off and CC messages, although it could also

send other kinds of serial information, i^2C, or other data types with some tweaks to the code.

Figure 49: Introductions in Front of Small Modular Synthesizer

 78

The concept started as a way to send information both to and from a computer, but the

scale of the project was adjusted for the time being. Instead of sending and receiving data, the

data flow is one way. The hardware uses a Teensy 3.2 microcontroller and a collection of jacks

and potentiometers. The potentiometers allow users to adjust the overall range of signals coming

into the microcontroller. With nothing plugged into the corresponding jack, a 3.3V signal is

normalized into the signal path, allowing the potentiometer to act as an offset or manual

controller over signal level. The Teensy 3.2 microcontroller accepts signals up to +5V, so the

potentiometers act to attenuate the signal level to a range the microcontroller expects. Because

the Teensy 3.2 only accepts signals between 0V (gnd) and +5V, I am unable to patch the outputs

of Ya Jerk directly into the CV inputs as its outputs swing up to +/-10.5V, but it can modulate

and influence other signals passing into Introductions.

I used a Eurorack case that housed a collection of modules from different manufacturers

but included two Ya Jerks and two Cascading Registers, as well as another module of mine, the

R2Rawr. The R2Rawr is much like the signal path from CV1 and CV2 in the Cascading Register,

except that it has five inputs for external signals. These are primarily intended to be gate signals,

and from those gate signals, it generates stepped CV signals. Other manufacturers included

Nonlinear Circuits, Doepfer, Make Noise, Noise Engineering, 4ms, ADDAC, Qu-Bit

Electronix, Mystic Circuits, and Bastl Instruments.

 79

Figure 50: The Modular Synthesizer Setup Used in the Installation

(L) Patched (R) Unpatched

There were three primary sound sources, a collection of oscillators from Noise

Engineering (Loquelic Iteritas and Sinc Iter) and 4ms (Ensemble Oscillator). These ran into a

number of effects modules, including one called Dark Matter from Bastl Instruments. This

module was key in the patch and for the theme of feedback loops. It is a module inspired by no-

input mixer techniques and was designed in partnership with Peter Edwards of Casper

Electronics. No-input mixing is a technique where instead of connecting external instruments to

an audio mixer, you feed the outputs of a mixer back into itself in order to generate sounds from

the resulting feedback loops. While I did use an external oscillator patched into the Dark Matter,

it includes a send and return loop. With nothing patched, it simply creates a feedback loop; but

you are able to patch from the output of the feedback loop to external effects and then back into

the feedback loop. I did so with the help of a module called the Data Bender from Qu-Bit

Electronix. This module was created to model some of the ways that audio equipment can fail,

inspired by circuit bending. Patching a feedback loop into a module intended to amplify the

inherent flaws in audio equipment leads to some interesting results.

I also patched one of the oscillators into the Tapographic Delay from 4ms, a delay

module which includes a feedback control to set the amounts of repeats in the delay line. I sent

 80

the output of the Dark Matter into a module called the Make Noise Phonogene, a digital

recreation of the tape machine as a musical instrument, as pioneered by Musique Concrète. This

module can record audio into a buffer much like a tape machine and includes further controls

that take it into the realm of granular synthesis. By periodically triggering the recording of loops

of audio, I capture the result of the Dark Matter feedback loop. However, there are

imperfections in the recording, and I modulated the parameters of the module to further change

the resulting sound. It creates an imperfect loop of audio, altered through the process of

recording and modulation.

 Modulation of these audio processes are primarily done by the pair of Cascading

Registers and the pair of Ya Jerks. Additional modulation came from the Nonlinear Circuits

Sloths, a chaotic signal generator whose primary purpose is to generate extremely slow

modulation and the Make Noise Maths, a function generator based on the Serge Dual Universal

Slope Generator. While Ya Jerk is arranged in a two-channel feedback loop by default, the pair

of Ya Jerks were connected in a larger feedback loop which included all four channels of chaotic

signals in a self-influencing feedback loop. One of the outputs from the Cascading Register ran

into a Make Noise Function, a smaller version of Maths. This module acted as a slew generator,

smoothing out the stepped CV signals from the Cascading Register.

The Cascading Registers’ clock outputs acted as a pair of master timing sources, sending

timing information to the 4ms Quad Clock Distributor and the Olivia Artz Modular

Uncertainty, two modules that take gate signals and alter them. The QCD is a clock

divider/multiplier, which takes a clock signal and either speeds it up or slows it down based on

an integer division of the incoming gate signal. The Uncertainty also affects a timing signal, it

alters the probability that the timing signal will pass to one of its eight outputs. The top output

has the highest probability of passing the input signal, while the bottom output has the lowest

probability of passing the input signal.

In addition to modulating the audio modules, several outputs from the modular

synthesizer were patched into Introductions. Two outputs from Maths and two outputs from

the Cascading Register (one smoothed by Function) were passed into the CV inputs on

 81

Introductions. One gate output from each of the Cascading Registers and one of the outputs

from the Uncertainty provided timing information for Introductions.

Figure 51: Block Diagram of Signal Flow through the Installation

The modular case sat in a cage in the middle of the installation space. This was to

prevent access from the viewers and would-be thieves. However, there was some limited

interaction between the audience and the modular synthesizer. On top of the case sat a piece of

wood with six knobs able to be touched by the viewers. These were connected to the delay time,

oscillator spread, the Maths CV output connected to Introductions, and two were connected to

the Ya Jerk feedback loop between the two modules.

In the previous chapters, I’ve discussed several systems that involve feedback processes

in order to generate unpredictable results. One commonly seen iteration of feedback comes in

the form of video feedback, where a camera is pointed at a monitor that is displaying the output

of the camera. While it often shows up accidentally, it has been a tool for artistic expression and

even a tool for the exploration of temporal and spatial dynamics. James P Crutchfield, in his

paper Space-Time Dynamics in Video Feedback, published in 1984, outlines the possibilities for

using camera feedback to model different dynamical systems and reaction-diffusion systems.

 82

Video feedback is a self-influencing system that takes its output and feeds it back into its

input. Due to imperfections in electronics, lenses, and monitors, the feedback path is nonlinear,

an essential element for chaotic behavior. The camera takes an image, converts it to electrical

signals, and passes it to the monitor, which interprets the electrical signals in order to reconvert

them to an image. This repeats over and over in a continuous loop. Each time it passes through

this loop, it is altered, and each part of the image influences the areas around it. Parameters

within this loop can be altered at will by the operator, such as rotating the camera, adjusting

focus, zooming in or out, changing brightness on the monitor, or other image processing

techniques.

The processes involved in a video feedback system are what is known as a dissipative

dynamic system. The energy in the system is lost to small amounts of error and freedom and the

system contracts over time. Often, the video feedback creates an attractor, either a fixed point,

limit cycle, or a chaotic attractor. The fixed-point attractor rests in equilibrium, while the limit

cycle oscillates in a predictable repeating pattern. The chaotic attractors amplify noise within

regions of the system while remaining globally stable, a mix of stability and instability. These

attractors may be disturbed and may or may not return to their previous form, or morph into

entirely new attractors, depending on the amount of change over time. Crutchfield’s writing

describes an analog system of video feedback, but feedback also exists in the form of digital

feedback, as I described in the previous chapter.

In my installation, I used a combination of camera and node-based feedback loops in

order to generate visual complexity and interest. There were several node-based feedback loops,

one connected directly to the chaotic shapes and the other composited with the output of a

webcam. A switch object selected between this second feedback loop and the output of a

displace object that combined the output of a complex video oscillator device, chaotic 3D shape,

and the processed output of the webcam. The webcam was connected to cache TOP which

stores the information of an incoming video signal. By adjusting the cache position with a

smoothed random signal, the timing of the video signal can be adjusted, scrubbing back and

forth through time, creating a sort of simple glitchy video delay.

 83

Figure 52: Top-down View of the Installation

The output of the TouchDesigner project was sent to a pair of projectors mounted on

the ceiling of the installation space. The webcam was pointed at the wall where one of the

projectors displayed its image, creating yet another feedback loop. When viewers walked up to

the modular synthesizer cage, they interrupted the feedback loop and influenced it simply by

walking through the space.

The signals interpreted by Introductions were sent to several destinations within the

project. One of the Maths outputs controlled the switch that blended between the displaced

signal and the feedback loop. The smoothed output from the Cascading Register selected which

chaotic equation was displayed, while the signal from Uncertainty reset the equations to clear the

buffer and start the process over. The value parameter on both HSV adjusts on the feedback

loops were also modulated, as well as the displace weight on the displace TOP.

 84

 85

 86

Figure 53-57: Stills from a Video Recording of the Installation

There were several issues that I ran into while setting up the installation. Originally, I had

a webcam and a CCTV camera both connected to the patch to capture video from two angles,

but the computer in the installation space did not accept two camera inputs. Several of the

chaotic equations caused the program to crash and/or behave erratically. The sound interface in

the space was not clearly labeled, and I had issues connecting the outputs of the modular

synthesizer to the four-channel sound system. The projectors in the space were not as powerful

or bright as the one I tested with, causing the image to be washed out when displayed. Despite

these setbacks, the installation was successful in an artistic sense from my view.

 You can see a video recording of the installation on my YouTube channel at this link if

you’re reading this online https://youtu.be/YqrN4Up7czA or by searching ‘omiindustriies

Feedback Loops All the Way Down” if you’re reading a printed version.

https://youtu.be/YqrN4Up7czA

 87

Chapter 6 Conclusion

The universe tends towards entropy, becoming more and more disordered as it

continues to spread out. Chaos is all around us, influencing our daily lives. If you forgot to turn

the lights off when leaving the house, and go back to turn them off, you might be delayed in

your journey to work to narrowly avoid an accident on the freeway; one example of how small

changes to the initial state of your day may result in large changes as you go about it. The

weather, the contractions of our heart muscles, the fluctuations of stock prices, all examples of

chaos that influence our everyday lives.

Is there determinism in the universe? I would argue that the trends of entropy knock off

any sort of predefined fate that may lie in store for humans. Small perturbations echo out of

even the smallest of choices, spreading like ripples. These ripples in the pond of reality come

into contact with the 8 billion other ripples that each human contributes to the overall direction

of the flow of this metaphorical water. Constantly shifting, we influence each other in a species-

wide feedback loop.

However, some things that do appear to us as random and disordered have an

underlying order to them. The human mind and imagination, which sometimes seem

unbounded, have limits to what we can conceptualize. We can know something is true, but

sometimes it just doesn't feel on an emotional level to be accurate. As I mentioned, a 32-bit

LFSR would take years to repeat itself if you left it running 60 times a second. Sometimes, what

we perceive as random simply has to do with the limits of human perception; numbers and

timescales that defy our conceptions of reality. Chaos, as I’ve explored, has an underlying

determinism, rules that define its behavior. There is a certain amount of unpredictability, these

rules appear simple but occupy the realm of complexity that baffle and intrigue many researchers

and artists.

 88

Modular synthesizers as they exist today are uniquely suited for harnessing chaos for

artistic applications. Eurorack, in particular, is ripe for experimentation due to the plethora of

manufacturers in the marketplace. There is a small and dedicated contingent of makers that seek

to delve into the realm of chaos, producing modules that lie outside the confines of traditional

synthesis. You couldn't dedicate the capabilities of a factory city in China to produce chaotic

synthesizers, there’s just not the market for it.

Composing with modular synthesizers sometimes is more of a two-way street. Instead of

the composer strictly inputting their compositional style onto sheet music or a DAW, a linear

input to output, a modular synthesizer may behave in ways that seem erratic or esoteric,

nonlinearly creating music. This is, of course, dependent on the modules used, as some are

particularly well suited for imposing a compositional paradigm onto them. My compositional

processes, however, are dependent on a give-and-take relationship with the electronic synthetic

behavior of chaotic and pseudo-random elements. Can electricity have a will? Are components

imbued with the powers of thought? Is my modular synthesizer alive in some non-organic sense?

In a scientific sense, probably not; but giving up some artistic will to a machine, a non-human

entity, can result in surprisingly organic feeling outcomes.

Is there inherent meaning in this exploration of the unpredictable? I’m not sure, but

perhaps the process is the meaning. Taking the time to look deeper into some of the underlying

systems that exist both in the real world and the abstract, delving into the depths of esoteric

electronics and complex simplicity. Perhaps this thesis has raised questions in you, the reader,

about things you may have taken for granted or have not examined. I hope to have left you with

both conclusions and curiosity. There is no end to this process, no final questions explored

completely, no grand unifying truths. Simply, I leave you with the words of James Gleick:

“Where chaos begins, classical science stops.”

 89

Bibliography

Barton, Todd. “Buchla Architecture.” Synthesizer Resource. Todd Barton (blog), n.d.

https://toddbarton.com/2014/02/buchla-architecture/.https://toddbarton.com/2014/02/buchla-

architecture/.

Crab, Simon. “120 Years of Electronic Music.” WordPress Blog. 120 Years (blog), 2021 1996.

https://120years.net/wordpress/.https://120years.net/wordpress/.

Crutchfield, James P. “Space-Time Dynamics in Vide Feedback.” Physica D: Nonlinear

Phenomena 10, no. 1–2 (1984): 229–45.

Electronics Tutorials. “The Integrator Amplifier.” Educational Resource. Electronics Tutorials

(blog), n.d. https://www.electronics-

tutorials.ws/opamp/opamp_6.html.https://www.electronics-

tutorials.ws/opamp/opamp_6.html.

Fitch, Andrew. “Nonlinear Circuits.” Store and Documentation. Nonlinear Circuits Modules

(blog), n.d.

https://www.nonlinearcircuits.com/modules.https://www.nonlinearcircuits.com/modules.

Fritz, Ian. “Chaos: General Remarks and Implementation.” Chaos Theory for Synthesizers (blog),

2007 2006.

http://ijfritz.byethost4.com/Chaos/ch_close.htm.http://ijfritz.byethost4.com/Chaos/ch_close.h

tm.

Gillet, Émilie. “Marbles Manual.” Github Manual Repository. Mutable Instruments (blog), n.d.

https://pichenettes.github.io/mutable-instruments-

documentation/modules/marbles/manual/.https://pichenettes.github.io/mutable-instruments-

documentation/modules/marbles/manual/.

Gleik, James. Chaos Making A New Science. 2nd ed. Penguin Books, 2008.

Neal, Meghan. “The Many Colors of Sound.” The Atlantic (blog), February 16, 2016.

https://www.theatlantic.com/science/archive/2016/02/white-noise-sound-

colors/462972/.https://www.theatlantic.com/science/archive/2016/02/white-noise-sound-

colors/462972/.

Nolte, David. Galileo Unbound. Oxford University Press, 2018.

Ovid. Metamorphoses. 1st ed. Vol. Book 1. 15 vols. Boston: Cornhill Publishing, 1922.

http://data.perseus.org/citations/urn:cts:latinLit:phi0959.phi006.perseus-eng1:1.5-

1.88.http://data.perseus.org/citations/urn:cts:latinLit:phi0959.phi006.perseus-eng1:1.5-1.88.

Random Numbers with LFSR (Linear Feedback Shift Register) - Computerphile. Youtube Video.

Computerphile. Computerphile, 2021.

https://youtu.be/Ks1pw1X22y4.https://youtu.be/Ks1pw1X22y4.

Rapp, Bastian. Microfluidics: Modelling, Mechanics, and Mathematics. Elsevier, 2017.

Rob Hordijk Rungler Demo // Modular Meets Leeds 2017. YouTube Video. Modular Meets Leeds

2017, n.d.

https://toddbarton.com/2014/02/buchla-architecture/
https://toddbarton.com/2014/02/buchla-architecture/
https://toddbarton.com/2014/02/buchla-architecture/
https://120years.net/wordpress/
https://120years.net/wordpress/
https://www.electronics-tutorials.ws/opamp/opamp_6.html
https://www.electronics-tutorials.ws/opamp/opamp_6.html
https://www.electronics-tutorials.ws/opamp/opamp_6.html
https://www.electronics-tutorials.ws/opamp/opamp_6.html
https://www.nonlinearcircuits.com/modules
https://www.nonlinearcircuits.com/modules
http://ijfritz.byethost4.com/Chaos/ch_close.htm
http://ijfritz.byethost4.com/Chaos/ch_close.htm
http://ijfritz.byethost4.com/Chaos/ch_close.htm
https://pichenettes.github.io/mutable-instruments-documentation/modules/marbles/manual/
https://pichenettes.github.io/mutable-instruments-documentation/modules/marbles/manual/
https://pichenettes.github.io/mutable-instruments-documentation/modules/marbles/manual/
https://pichenettes.github.io/mutable-instruments-documentation/modules/marbles/manual/
https://www.theatlantic.com/science/archive/2016/02/white-noise-sound-colors/462972/
https://www.theatlantic.com/science/archive/2016/02/white-noise-sound-colors/462972/
https://www.theatlantic.com/science/archive/2016/02/white-noise-sound-colors/462972/
https://www.theatlantic.com/science/archive/2016/02/white-noise-sound-colors/462972/
http://data.perseus.org/citations/urn:cts:latinLit:phi0959.phi006.perseus-eng1:1.5-1.88
http://data.perseus.org/citations/urn:cts:latinLit:phi0959.phi006.perseus-eng1:1.5-1.88
http://data.perseus.org/citations/urn:cts:latinLit:phi0959.phi006.perseus-eng1:1.5-1.88
https://youtu.be/Ks1pw1X22y4
https://youtu.be/Ks1pw1X22y4

 90

Rössler, Otto. “An Equation for Continous Chaos.” Physics Letter 57A, no. 5 (May 27, 1976):

397–98.

Slater, Dan. “Chaotic Sound Synthesis.” Computer Music Journal. MIT Press 22, no. 2 (1998):

12–19.

Sprott, J.C. “A New Chaotic Jerk Circuit.” IEEE Transactions on Circuits and Systems_II:Express

Briefs 58, no. 4 (April 2011): 240–43.

https://doi.org/10.1109/TCSII.2011.2124490.https://doi.org/10.1109/TCSII.2011.2124490.

———. “Common Chaotic Systems.” Blog. Common Chaotic Systems (blog), April 18, 1998.

https://sprott.physics.wisc.edu/chaos/comchaos.htm.https://sprott.physics.wisc.edu/chaos/co

mchaos.htm.

———. “Some Simple Chaotic Flows.” Physical Review E 50, no. 2 (August 1994): R647–50.

Strange, Allen. Electronic Music: Systems, Techniques, and Controls. 2nd ed. Responsive

Ecologies Lab, 2022.

This Equation Will Change How You See The World (The Logistic Map). YouTube Video.

Veritasium, 2020. https://youtu.be/ovJcsL7vyrk.https://youtu.be/ovJcsL7vyrk.

Weng, Cho Chew. “ECE 255, Diodes and Nonlinear Circuits.” Purdue Engineering, January 18,

2018.

https://engineering.purdue.edu/wcchew/ece255s18/ece%20255%20s18%20latex%20pdf%20

files/ece255Lecture_4_Jan18_Diode_Nonlinear_Circuit.pdf.https://engineering.purdue.edu/w

cchew/ece255s18/ece%20255%20s18%20latex%20pdf%20files/ece255Lecture_4_Jan18_Di

ode_Nonlinear_Circuit.pdf.

Whitwell, Tom. “17 Things to Know about Turing Machine.” Synthesizer Documentation. Music

Thing Modular (blog), n.d. https://www.musicthing.co.uk/Turing-

Machine/.https://www.musicthing.co.uk/Turing-Machine/.

https://doi.org/10.1109/TCSII.2011.2124490
https://doi.org/10.1109/TCSII.2011.2124490
https://sprott.physics.wisc.edu/chaos/comchaos.htm
https://sprott.physics.wisc.edu/chaos/comchaos.htm
https://sprott.physics.wisc.edu/chaos/comchaos.htm
https://youtu.be/ovJcsL7vyrk
https://youtu.be/ovJcsL7vyrk
https://engineering.purdue.edu/wcchew/ece255s18/ece%20255%20s18%20latex%20pdf%20files/ece255Lecture_4_Jan18_Diode_Nonlinear_Circuit.pdf
https://engineering.purdue.edu/wcchew/ece255s18/ece%20255%20s18%20latex%20pdf%20files/ece255Lecture_4_Jan18_Diode_Nonlinear_Circuit.pdf
https://engineering.purdue.edu/wcchew/ece255s18/ece%20255%20s18%20latex%20pdf%20files/ece255Lecture_4_Jan18_Diode_Nonlinear_Circuit.pdf
https://engineering.purdue.edu/wcchew/ece255s18/ece%20255%20s18%20latex%20pdf%20files/ece255Lecture_4_Jan18_Diode_Nonlinear_Circuit.pdf
https://engineering.purdue.edu/wcchew/ece255s18/ece%20255%20s18%20latex%20pdf%20files/ece255Lecture_4_Jan18_Diode_Nonlinear_Circuit.pdf
https://www.musicthing.co.uk/Turing-Machine/
https://www.musicthing.co.uk/Turing-Machine/
https://www.musicthing.co.uk/Turing-Machine/

