
Notes on Developing Personal Laptop
Improvisation Software

Nathan Ho

July 26, 2019

Abstract

This paper describes the author’s philosophy on laptop improvisation
as developed in the a personal software instrument, titled FORAY, which
runs on a laptop with no additional gear and makes heavy use of sound
synthesis and algorithmic composition. FORAY is constantly evolving
and personal to the author, so instead of describing the architecture of the
system, this paper serves as a personal essay on the process of developing
and using the instrument. It is hoped that aspects of FORAY might
resonate with other artists working on similar projects.

1 Introduction

The motivations and approaches to live creation of electronic music are highly
diverse and personal. Many musicians wish to produce electronic music in
real-time and escape the non-improvisatory workflows offered by traditional
DAWs, and luckily the endless modularity and hackability of modern music
technology enables them to devise their own live musical workstation tailored
to their needs. When the system they develop reaches maturity, feedback
loops happen as the artist develops their rig: their musical style motivates
them to extend their workstation, they experiment with it and discover
surprising outcomes that shape their stylistic practice, and these results in
turn encourage them to develop the system further. The artist entering a
dialog with themselves as an instrument builder and as a musician allows
them to explore sonic and expressive avenues unconstrained by the
availability of existing tools.

Years ago, as a programmer who had just started learning about
electroacoustic music, I had a vision to create a live electronics improvisation

1



rig of my own, and began work on it with fantasies that I would use and
develop it for years. I quickly discovered that this was harder than I had
imagined, and I grew discouraged about the quality of its output and
abandoned it months later. This grew into a cycle — restart project with
delusions that “this time around I’ll finally make the instrument I’ve been
dreaming of!”, realize that I have been working on it for weeks with no good
musical output, trash it, and start over. It took several failures over the years,
but the most recent incarnation, titled FORAY, proved to be the most
successful. In the process, I learned many important lessons about live
electronics and refined my philosophy over time. This article serves as an
informal reflection to share my approach to live electronic music as developed
in the project. It contains advice that wished I could read before I started
building a custom live electronic music rig.

Contrary to expectations set up by most academic writing in the field of
live electronics, the specifics of the FORAY project are not an important part of
this paper. In fact, I will deliberately sidestep elaboration on many of the
technical details. Much of it is constantly in flux, and I consider it more
important to communicate the approach and philosophy rather than the
specific ways they manifest in the project. Other details I have made a point of
keeping secret. FORAY is an artistic work rather than a research project, and I
am entitled to draw such boundaries. Given these omissions, the amount of
detail expressed in different parts of the paper may be strange or lopsided,
and the reader is not expected to form a complete mental picture of FORAY.
This is intentional, since I am more interested in discussing the abstract
process rather than my personal system (emphasis on “personal”).

Section 2 describes the design goals and philosophy of the project, and
Section 3 discusses several systems that influenced it. Section 4 discusses
some of the approach to algorithmic composition, and Section 5 the
philosophy toward sound design, mixing, and interaction.

2 The FORAY Philosophy

As a likely unnecessary disclaimer, the goals of the FORAY project are a
product of personal experiences and interests, and few readers will fully agree
with every detail. Three points stand out to me as particularly core values of
the project’s philosophy: productivity, price and durability, and diverse
output.

2



Productivity: Musicians (and artists in general) often lament about
starting works and never finishing them. Here is a story familiar to any
musician: start an interesting new piece, work on it for an hour, leave to run
some errands, come back to it the next day, and abandon it since it no longer
sounds good. Nothing is inherently wrong with sketching, but many
musicians are understandably interested in progressing to completed works
of music, and find challenges doing so. Specific to electronic music
production, the prominence of the timeline view encourages endless tweaking
and caving to perfectionist impulses.

Improvisation is easily one of the quickest workflows in music. The time
to produce an improvised work of music is exactly the length of the piece.
More importantly, improvisation is an effective remedy for perfectionism.
Coming from a background of piano improvisation, I enjoyed the finality of
recordings where it is virtually impossible to change a work once it has been
created. The artist has to accept the music, complete with mistakes that
inevitably occur in live music. FORAY is an improvisatory system rooted in
the desire for productivity that comes from escaping timeline views and
embracing imperfections and flaws.

Productivity also encompasses more practical issues of accessing the
workspace — thus, FORAY has been designed to be easy to transport, set up,
and tear down, and easily allow making music on the go. For this reason, it is
a purely software instrument that requires only a basic laptop, as will be
discussed later.

Price and durability: Keeping FORAY as cheap as possible to build and
maintain is an important goal. Furthermore, when I sit down to make music, I
should not be worrying about whether my software or hardware will break.
FORAY is therefore a laptop-only rig with no outboard gear. Laptops are not a
perfect solution to anxiety about technical failures, but most of the
alternatives for electronic music production present few relative advantages.

Diverse output: To justify the amount of work involved in building and
maintaining the system itself, the system must be useful for creating multiple
clearly distinct musical works. If FORAY only has the flexibility to make one
piece, the time spent building FORAY itself would not be justifiable. One way
diverse output can be achieved is through the design of an interface that
surprises the user and may take unexpected (but controlled) turns. This is a
motivating factor for an overall heavy use of randomness in the sequencing
and synthesis components of FORAY.

With these principles in mind, the design decisions made in FORAY are

3



discussed in the next sections.

2.1 Hardware and Software

FORAY takes a minimalist approach to both hardware and software. The
instrument requires nothing more than a basic laptop, and live control is
exerted using only the laptop trackpad and keyboard. The on-screen interface
consists of a simple array of knobs and buttons to control parameters and
trigger musical events. No MIDI controllers, outboard gear, or fragile
homemade interfaces are used. On the software end, FORAY is built entirely
in the free and open source SuperCollider1 programming language. There are
no other programs involved so that the number of moving parts can be
minimized (inspired by personally witnessing performances disrupted by
software programs refusing to connect).

Since I do not normally have access to a multichannel speaker setup,
FORAY is strictly for the creation of stereo music.

2.2 Pure Synthesis

FORAY uses only real-time audio synthesis, with no use of sampling.
Sampling vs. synthesis is a classic dichotomy in electronic music production,
and the decision to choose synthesis is largely a personal preference. Pure
synthesis also aligns slightly better with the project goals over sampling, since
synthesis is more likely to yield surprising and diverse output, and the
process of selecting and auditioning samples is not ideal in an improvisational
setting.

Live audio input is avoided due to material disadvantages that contradict
the goals of the project. It requires the setup of a microphone, which
immediately opens up a number of potential issues: the need to use an audio
interface, the need for an environment with low background noise, and the
danger of feedback when dealing with a speaker system. All these are points
where the system can fail.

2.3 Real-Time Composition

FORAY sequences notes and sound effects with algorithmic composition
methods. No timeline views, piano rolls, or step sequencers are used.
Naturally, this is informed by personal interests, but I have experimented

1https://supercollider.github.io/

4

https://supercollider.github.io/


with more traditional note entry methods and found that they encourage too
much tweaking, and tend to be too slow for real-time music creation.

In place of repetition and traditional note entry, FORAY employs methods
for real-time algorithmic composition, parametrically controlled in real time.
In this way, creating music in FORAY is similar to conducting an improvising
ensemble. Delegating compositional processes to algorithms allows the user
to focus on music at the macro level.

2.4 Non-goals

Research: FORAY is not a research project. It has no novelty in signal
processing, interface design, or algorithmic composition. It is not a project
built for other people, and there are no plans to make it publicly available.
FORAY is a system built solely for my own musical practice, so it is constantly
undergoing evolution.

Performance: I am careful to avoid the term “performance” when
describing FORAY, because a “performance” recalls the history of acoustic
music traditions which have aspects of visual engagement. A tenet of my
system — one which I hope is not too delusional — is that good-sounding
music is sufficient for an enjoyable listener experience, and that the visuals of
a stage performance need not be a priority.

Live Coding: Despite the fact that I use similar hardware and software
tools, FORAY is not a live coding project. There is no live design or
modification of algorithms, only simple scalar controls like knobs, buttons,
and sliders that control parameters on pre-made algorithms.

AI Hype: In recent years, many artists have made use of
computer-generated music as a promotional aspect of their artistry. With no
intentions to criticize such works, I am drawn to algorithmic composition for
its convenience rather than commentary on the implications of computational
creativity.

Stylistic Neutrality: While the ability to produce contrasting musical
works is a project goal, FORAY is opinionated on the style of music it
generates — Western art electronic music with influences of ambient music.
As will be discussed in Section 5, I have found such focus to be critical for a
successful live electronics rig. Overfocusing on stylistic generality usually
does little more than delay the production of music.

5



3 Influences

3.1 Yotaro Shuto’s 2020

The primary inspiration for FORAY is Yotaro Shuto’s 2020,2 a live
performance software instrument developed for macOS, originally released in
2015 via a Kickstarter campaign and currently in a beta stage. Immediately
impressive about this interface is its maximalism, featuring hundreds of
knobs, buttons, and toggles — it is intended as a complete music-making
solution where every parameter is in reach. 2020’s documentation contains a
particularly striking passage on live electronic performance [sic]:

2020 is like a musical instrument. to become a master of it, you’ll
need time, inspiration, and endurance.

5 minutes : Install it in your computer.

1 hour : You will slightly understand how is it.

1 day : You will be able to run through all functions.

1 week : You will be able to compose FIRST SONG.

1 month : You will be able to acquire Tips & Tricks.

6 month : You will be ready to perform on a stage!

1 year : 2020 will be a part of your body.

FORAY began as my own personal take on 2020. Like FORAY, 2020
contains features for randomized sequencing and sound design. Unlike
FORAY, 2020 is heavily sample-based (although it contains some useful
synthesis features), employs a steady tempo, and contains “semi-modular”
features.

3.2 Hardware Modular Synthesizers

Hardware modular synthesizers are inherently live environments, intended
for the real-time creation of music without timeline views. Members of the
modular community often mention the emphemeral nature of creating music
entirely on such systems. A patch cannot be perfectly reconstructed after
taking it down, so the user has to be content with recorded audio output
alone. This notion of finality is a spirit that FORAY intends to capture.

2Shuto, Yotaro. 2015. “2020: Getting Started.” http://2020.dubrussell.com/beta/getting

started.html

6

http://2020.dubrussell.com/beta/getting_started.html
http://2020.dubrussell.com/beta/getting_started.html


The general Eurorack market has increasingly explored two particular
directions relevant to the current project: generative sequencing and
experimental sound design. Notable generative sequencing products include
2hp’s Euclid (a Euclidean rhythm sequencer), Music Thing Modular’s Turing
Machine (a partially randomized sequencer), and Mutable Instruments’ Grids
(a drum sequencer built on a zero-order Markov chain table).

FORAY itself has no modular aspects, and the actual interface is more akin
to controlling an existing modular patch. Eventual addition of modular
features to FORAY is not out of the question, but I would discourage other rig
developers from concentrating on generality in the early stages of
development (see Section 5).

3.3 Thomas Fay’s Algorithmically Assisted Improvised Music

Thomas Fay’s Algorithmically Assisted Improvised Music3 is a collection of
software modules for algorithmic manipulation of pre-composed materials in
a live setting. In the state as presented in Fay’s thesis, AAIM is a collection of
Max patches and Python scripts, including a rhythm generator and modules
for manipulating rhythm triggers, sample playback, and melodies.

AAIM has close philosophical commonalities with FORAY (and,
unsurprisingly in this small space, some shared influences). In describing the
artistic goals of AAIM, one particular passage applies well to FORAY:

Ultimately, the goal of the AAIM system is to enable the user to act
as a conductor or band leader, that is, to control the overarching
nature of the performance while leaving the performance of
individual parts up to the players, in this case the algorithms. This
approach is common to much of electronic music, and is evident,
for example, in the use of sequencers to control modular
synthesisers. However, in contrast to the traditional use of
sequencers, AAIM focusses on using this approach to allow users
to determine the type, and magnitude, of variations and
manipulations applied to the musical material, in a sense enabling
the user to tell “the orchestra how to improvise.”

FORAY shares the aim of an interface analogous to conducting an
ensemble of improvisers, using macro-control over sequencing rather than

3Fay, Thomas. 2016. AAIM: Algorithmically Assisted Improvised Music. PhD thesis. https://

prism.ucalgary.ca/handle/11023/3073

7

https://prism.ucalgary.ca/handle/11023/3073
https://prism.ucalgary.ca/handle/11023/3073


individual note entry. While AAIM is beat-based and uses some looping
elements, it shares with FORAY an interest in experimenting with
non-repetitive material in contrast to many sequencers in commercial music
technology products.

There are, however, some considerable differences in scope. AAIM is not a
self-contained application, but rather a set of algorithmic sequencing tools
that make no assumptions about actual sound sources. This follows from
AAIM’s artistic goals to be stylistically neutral. FORAY is a much more
stylistically opinionated system, and the current development focus is more
on expressiveness and creative flow rather than generality.

4 Algorithmic Composition

The FORAY algorithmic composition system is built with the aim of creating
traditional tonal harmony. The general strategy to algorithmic composition in
the program is entirely rule-based, in contrast to popular corpus-based
approaches employing Markov chains or sophisticated machine learning
methods. Compositional algorithms based on simple, handmade rules give
the artist fine control, and importantly do not require the collection of a
dataset.

The specific rule-based composition methods in FORAY are rudimentary.
It turns out that surprisingly simple algorithms are adequate for producing
musically coherent results. Again I will stress that FORAY is an artistic project
rather than a research project, so I have not necessarily explored the
implications of the system beyond reaching a point of satisfactory musical
output.

4.1 Harmony Model

The traditional definition of a “chord,” as a collection of three or more pitch
classes, is not an adequate foundation for algorithmic tonal harmony. Jazz
musicians know that a chord always comes attached to a scale, and figuring
out that exact scale is a matter of context. For example, in the chord
progression Dm-G-C, one cannot take the G chord out of context and play a
full G major scale. An experienced improviser would recognize this as a ii-V-I
progression, and likely default to a G Mixolydian scale over the G chord
instead.

To give the melody generator contextual awareness, we generalize the

8



Name Scale Chord (root first)
i {0, 2, 3, 5, 7, 8, 10} {0, 3, 7}

iiø7 {0, 2, 5, 7, 8} {2, 0, 5, 8}
III {0, 2, 3, 5, 7, 8, 10} {3, 7, 10}
iv {0, 2, 3, 5, 7, 8, 10} {5, 0, 8}
v {0, 2, 3, 5, 7, 8, 10} {7, 2, 10}
V {0, 2, 3, 5, 7, 8, 11} {7, 2, 11}

VI7 {0, 2, 3, 5, 7, 8, 10} {8, 0, 3, 7}
VII {0, 2, 3, 5, 7, 8, 10} {10, 2, 5}
N6 {0, 1, 3, 5, 7, 8, 10} {5, 1, 8}

Table 1: Examples of harmonies for a C minor tonic entered into the FORAY
library.

chord into a larger object called, for lack of a better term, a “harmony.” A
harmony is a chord augmented with information on a scale to which it
belongs. More specifically, a harmony is modeled with three components: a
nonempty set of pitch classes designated as the scale, another nonempty set of
chord tones which is a subset of the scale, and a root, a member of the set of
chord tones. This formalization of harmony, while certainly not
comprehensive in the grander scheme of tonal harmony, allows the melody
generator to have full awareness of both chord tones and non-chord tones.

Using this system, we can build up a library of harmonies. Table 1
displays an example of some harmonies entered specifically for a C minor
tonic in the FORAY system. Other keys are formed in the obvious way by
transposition. A few details of the table are worth noting. Most chords occur
within a natural minor scale, but some chords are not — e.g. V, which
includes scale tone 11 (B-natural) rather than 10 (B-flat). The scale for the
chord iiø7 specifically omits pitch classes 3 and 10, or the 3rd and 7th scale
degrees of the tonic. This is not a reflection of any properties of the
established theory, but simply the removal of tones which sounded awkward,
an example of personally doctoring chords and scales to “teach” the system
my own ideas of how tonal harmony should sound.

Currently, FORAY employs only tonal harmony, but it is designed with
separation of concerns between harmony objects and the melody generator,
making the system simple to generalize to non-tonal paradigms of harmony.
Generalization to non-12ET pitch spaces is also straightforward.

9



4.2 Chord Progression Generation

FORAY’s current implementation of chord progression generation is only
preliminary, but musically serviceable. It uses a small bank of manually
written short chord progressions ranging from three to six chords, all of them
ending on the tonic, and simply selects random progressions in sequence.

This scheme is inspired by Luce Beaudet’s analytical model of tonal
harmony expanding on the work of Goldman and others. This model
describes tonal harmony in terms of harmonic structural units (HSUs), which
are fragments of a descending diatonic circle of fifths (IV → VII → III → VI →
II → V → I) that end on I, V, or occasionally IV. That an HSU must end on a
chord close to the tonic is a way of “grounding” progressions and making the
listener aware of the tonic. Certain progressions that do not exactly follow the
circle of fifths, such as IV-V-I, are explained using a vocabulary of
transformations, such as substitution of a chord for a related chord or
insertion of a closely related chord. A complete explanation of the model is
beyond the scope of this paper, but the reader is invited to visit Beaudet and
Menard’s entertainingly illustrated online textbook on the subject.4

Even a simple sequence of partially randomized chord progressions
produce convincing results, generating tension and release that the user can
react to while creating music in the system. More advanced uses of Beaudet’s
analytical model, especially in how it relates to live user control, may prove to
be an interesting avenue of exploration for generative systems of tonal
harmony.

4.3 Melody Generation

The melody generation techniques used in FORAY are, as always, simple and
only developed to the point of producing satisfactory output. The methods
presented are loosely inspired by the work of Brown and et al.5 on melody
generation based on Gestalt psychology.

The strategy for developing this component is “start boring but pleasant,
then make it less boring.” The simplest “pleasant” melody generator would
be a random arpeggiator that selects independent random chord tones within
the currently active harmony, with sample output in Figure 1a. Immediate

4Beaudet, Luce and Ménard, Sylvie-Ann. L’œil qui entend, l’oreille qui voit — un modèle d’analyse
du discours harmonique tonal. http://bw.musique.umontreal.ca/

5Brown, Andrew R. et al. 2015. “Techniques for Generative Melodies Inspired by Music Cog-
nition.” Computer Music Journal, Vol. 39, No. 1.

10

http://bw.musique.umontreal.ca/


a) Random arpeggiator:

� � ���� ������������� � �� ��
b) Avoiding immediate repetitions:

� � ���� ������������� � �� ��
c) Modulation of range with a sine wave:

� � ��
�� ������

������� � �� ��

d) Neighbor tones:

� � ���� ����
���

������ � � ���

e) Additional three-note gesture:

� � ���� �����
�� ������ �

� ���

Figure 1: Sample outputs at different stages of the melody generator with un-
derlying chord progression of a minor plagal cadence, iv-i, in the key of C
minor.

11



repetitions sound awkward, so they are disallowed (Figure 1b). To add more
variety and directionality over time, we introduce gradual modulation of
register by slowly changing the center of the range. This modulation may be
controlled directly by the user with a knob, and/or autonomously varied
using any kind of slow random LFO. In the latter case, a triangle or sine wave
with randomly varied frequency produces a nice balanced usage of high and
low register (Figure 1c). Random walks must be used with caution since they
may cause the range to wander off too high or too low, and rarely in a musical
way.

A melody generator that adheres to only chord tones is already quite
useful as a textural element, but its output is limited. For features more
typical of a real melody, we may introduce non-chord tones. In place of a
random chord tone, the generator has a chance of instead composing a small
two-note gesture, consisting of a chord tone preceded by a neighboring tone
in the scale (Figure 1d). Expanding on this concept, the melody generator can
be augmented with a more elaborate library of non-chord-tone gestures
(Figure 1e). I built up this library (not shown) by improvising melodies at the
piano and analyzing what gestures seem to come naturally.

The melody generator currently in use in FORAY is somewhat more
complicated than this (in particular I have not discussed its handling of
rhythm), but this should give the basic idea of its operation. As one
suggestion for improvement, the numerous skips and leaps in the melody can
be smoothed out by using an appropriate set of constraints. Many other
developments in algorithmic composition literature may be incorporated.
While the output of the current melody generator is not always as memorable
or as interesting as a human improviser, even at their most bland the lines
generated are still serviceable and musical. It makes for good polyphonic
textures when multiple voices run at once, even when no polyphonic
constraints are specifically designed — the only unifying factor is that all
melodies derive generate in parallel from the same chord progression.

When a generative melody system developed in conjunction with
synthesizer patches, as is the case with FORAY, there is interesting potential
for the melody generator to attach special semantic information on how the
notes were generated. For example, notes coming from a two-note neighbor
tone gesture are tagged as such, and the synthesis patch might decide to
interpret such moments as portamento. This is analogous to a human
perfomer reading music notation and using contextual and music-theoretic
cues to intelligently inform their use of phrasing, dynamics, and articulation.

12



Close coupling between synthesis and sequencing is particularly easy in
the SuperCollider language, which permits users to encode musical events
with arbitrary key-value data, and in particular does not force the user to
shoehorn auxiliary data into MIDI CC numbers. With effort on the designer’s
part, giving the synthesizer access to deeper semantic information than
simply notes and rhythms can bring dull patches to life.

5 Sound Design and Interaction

5.1 One Big Patch Syndrome

One Big Patch Syndrome is my term for a mistake that was responsible for
many failures in previous iterations of FORAY. The demographic particularly
affected by this issue is software engineers interested in creating their own
live electronics rig, but it may apply to many others.

One Big Patch Syndrome happens when an artist overthinks the generality
of their system and starts developing technical scaffolding instead of making
music. “If I just create the one big patch that allows me to make any sound I
want, I’ll finally achieve musical expression in my electronics!” This attitude
just leads to frustration, and usually bad music. For example, in one earlier
attempt at an electronics rig, I started by attempting to classify as many
timbres as I could think of, organizing them into a set of categories, and
mapping different parts of a MIDI keyboard to different categories. I will
leave it to the reader to imagine how musically interesting the result was.

To avoid One Big Patch Syndrome, stop thinking about whether the
expression of your system is optimal and whether it achieves full generality in
timbre. Instead, prioritze the creation of musical works. Design some sounds,
assemble them into a composition, and add more and more live-controlled
parameters. When you have great musical materials, live control will
immediately follow. Worrying about the diversity or stylistic generality of
your patch in the early stages of the project will paralyze its development.

The first steps toward the creation of FORAY was a set of three different
patches that I realized had some properties in common, and could be merged
into a single synthesizer with a flexible set of parameters. I then made a GUI
interface with knobs to dial in parameters. Over time, I added more
parameters that seemed interesting, removed parameters that felt less
musically useful, and eventually added a preset system for saving and
loading settings. I used a basic algorithmic sequencer that simply picked

13



random chord tones, and slowly made it smarter and more musically
sophisticated. By starting with sound design and incrementally building the
system around it, the results proved far more motivating and fruitful than my
previous attempts at overgeneralization.

As specific advice for experienced software engineers building their own
workstation, and particularly other SuperCollider users: code quality should
be extremely low on the priority list in this pursuit. When developing custom
music software, it is important to work quickly and sloppily, focusing on
creating sound rather than making well-architected software. There are many
technologically oriented artists who possess only rudimentary coding skills,
but are still able to produce successful works because their focus is the quality
of the results.

5.2 Mixing and Dynamics

Dynamics are a particular challenge for musicians working with real-time
generative and algorithmic music. Heavy use of algorithmically generated
note sequences and random modulation makes the volume and frequency
balance between different tracks in the mix inherently unpredictable.

The first and foremost issue is avoidance of clipping, and the obvious
solution is a limiter. After adding this in the early stages of the project, I
quickly realized that the limiter could be driven hard as a creative effect. All
elements are being mixed in real-time through the limiter, rather than the
limiter being applied as a downstream stage after mixing. Overdriven limiters
often create sweet spots where two elements interact with each other and fight
for headroom. FORAY’s architecture also places the limiter after
reverberation, which has an interesting effect on the perception of space.

Seasoned audio professionals frown on aggressive master compression,
usually preferring to carefully fine-tune balance at the stem level rather than
allow an algorithm to set levels for them. While good advice for more
traditional audio production settings, this is absolutely not something I am
concerned with as an experimental electronic musician. Imperfect mixing is
something to be expected in a live rig with unpredictable generative elements,
and I am more than happy to allow an algorithm to exert control over
dynamics so I can prioritize sound design and arrangement. Furthermore, the
musical style I have developed through my use of FORAY benefits from
heavy compression. Other forms of electronic music, however, may tends
more toward quietness and high dynamic range, and may prefer the use of a

14



limiter only as an anti-clipping measure.
In the master bus, I use two soft-knee limiters in series: first a “color”

limiter with a fast attack and release, and a second “mastering” limiter with
slow attack and release and a bit of lookahead. Both are set to nearly the same
threshold. The color limiter is intended to be driven hard to create the
aforementioned dynamic interactions, and the mastering limiter tames
transients so the output track is slightly brickwalled. There is an additional
10 dB of headroom just to be absolutely safe from digital overs. I found no
need to adjust these limiter settings while playing, so no controls were created
— just a visualization of the gain reduction amount of the color limiter.

Exploring the use of limiters in the creation of musical works, I arrived at a
playing style I am satisfied with. During quieter sections of works, I tend to
stay 5-10 dB below the limiter threshold. During louder sections I aim for
moderate gain reduction of 3-5 dB, and in climactic moments I drive the
limiter to 10 dB or more. This way, the overall work is dynamic, and the
loudest sections are appropriately loud.

5.3 Sound Design

Sound design is a personal practice that can only be developed with
experimentation over time, so I am most comfortable keeping secret the
specific synthesis patches I created in FORAY. The following tips summarize
my overarching philosophy on sound design.

Replication Exercises: Much of my sound design comes from “replication
exercises.” Typically, I try to locate interesting-sounding source material,
focus on a single element, and attempt to mimic it with a synthesizer patch.
Whether or not the replication is successful, it is often at least interesting, and
forms a starting point for a a new instrument.

Early on, I used mostly other electronic music to explore replication
challenges, but increasingly, I have deliberately avoided over-listening to
electronic music in related styles to resist the temptation to mimic it too
closely for myself. Instead, I have found acoustic music a valuable resource
for studying sound design, since acoustic instruments often have unique sonic
properties that a synthesist would not otherwise consider. Western art music
with unique orchestration and numerous non-Western musical traditions are
particularly fruitful sources of inspiration.

Effects Cocktail: various combinations of filter, chorus, phaser, flanger,
reverb, sample rate reduction, pitch shifting, saturation, multitap delays,

15



wavefolding, extreme compression and limiting, granulators, and feedback
across any of those. I tend to use simple sound sources and let the effects
sculpt them into something more complex, so this technique may be viewed
as a generalization of subtractive synthesis. The “effects cocktail” was directly
inspired by the production methods used in brostep and dubstep bass
synthesis.6

With overcomplicated effects chains, every element in the chain adds its
own flavor, especially if it contains artifacts of some kind. The signal path
accumulates a cascade of imperfections and complexities, resulting in
wonderfully organic sounds. It can be used subtly as well as dramatically —
by mixing a small amount back into the dry signal, a bit of space and
character is added.

Reverb is a particularly important effect in purely synthetic music.
Synthetic sounds tend to be completely dry, so even a small amount of reverb
can give the impression akin to the body of a real instrument. (The traditional
audio mixing advice of sending all tracks at various levels to a single reverb,
while useful, is less important when dealing with synthesis-heavy music.)
Furthermore, reverbs create complex signals that have a butterfly effect on
downstream elements in the signal path. Unusual reverbs such as banks of
comb filters or modal resonators provide interesting alternatives when a
standard reverb proves too bland. There is, of course, such a thing as too
much reverb, and I often have to suppress the habit of overapplying it to
compensate for an undercooked sound source.

I am particularly fascinated by the possibilities when applying an effect
and then imperfectly reversing it. These include pitch shifting up and then
down, compression followed by expansion, reverberation followed by crude
dereverberation (i.e. noise gating), etc.

Modulation: Movement is critical for interesting sound synthesis. I make
extensive use of random LFOs created by starting with a random impulse
train, using that to trigger random sample-and-hold noise, and then
smoothing out the signal with a one-pole lowpass filter. The two controls for a
random LFO are its rate and its smoothness. This way, I have control over a
continuum from hard glitches to smooth, organic wobbles. Modulation
targets can include parameters of filters, and crossfade controls between
parallel effects chains.

6Mr. Bill. Masterclass at BPF College. https://www.youtube.com/watch?v=XNbYjPQ9Zkg

16

https://www.youtube.com/watch?v=XNbYjPQ9Zkg


5.4 Pacing

Once FORAY reached a level of maturity where I could create large-scale
musical development, the pacing of musical works in a live environment
became a concern. This is a lesson I learned when I presented FORAY live at a
forum — in my nervousness, I burned through the options I had far too
quickly, immediately reaching stasis. States of frustration where I cannot
decide where to go next are detrimental to creative flow.

A timer added to the software’s GUI helped with awareness of real time,
but solving pacing issues is largely a human factor. I come from a background
of piano improvisation, where I can do spontaneous composition from
intuition. However, since I lack experience improvising on the system that I
built, I have to relearn how to pace my works. To get satisfactory
development, I found I had to think several steps ahead — how will the piece
change over the next minute? What is the destination I am trying to arrive at?

Pacing is also perceived differently between the artist and audience. I have
been listening and experimenting with these patches for months, but the
listener has only been hearing it for 10 seconds. The use of generative
sequencing and highly dynamic sound design means that the patch is still
evolving quite quickly even if I am not actively changing any parameters.
However, during such moments, I know how the patch will develop, and I
reach impatience much quicker. When I realized how this distorted
perspective impacted my music, I started correcting for it by simply
developing slower. I lingered much longer on points that I found pleasing. I
avoided immediately activating every instrument all at once, instead waiting
extended periods of time to introduce them.

By working in a goal-oriented, time-aware manner rather than aimlessly
wiggling knobs, and by staying patient and moving slowly, I immediately
noticed improvements in the form of my music, a reduced frequency of
“stuck” moments, and a much easier time improvising for an hour or more
without running out of material or dragging any section out for too long.

Nevertheless, stuck states are still unavoidable. The addition of a preset
system proved hugely beneficial as an easy way out of such points, provided
that they are not overused. A preset system also has an interesting side effect:
Extremely interesting results happen when crossfading the parameters of
distant presets. Both settings were human-designed, and intermediate
settings tend to have the qualities of both, but a sound completely
unpredictable to the designer.

Overall, good pacing with live generative electronics is a problem of

17



finding a balance between interesting development and patient use of
material. My personal experiences are that I move too eagerly and had to
compensate by slowing down. Other artists might find they have the opposite
problem. Either way, developing an awareness for pacing is an important
aspect of electronic improvisation, and presents specific challenges for artists
building their own live workstations.

6 Conclusions

Building a custom rig for live electronic improvisation is an exciting prospect,
but one that takes hard work and an understanding that failure will happen
and that the system will never be perfect. In the development of FORAY, I
experienced a lot of failures. While FORAY itself I consider a success, it is still
a perpetual work in progress. With constant development and refinement,
and more importantly extensive practice with the instrument itself, I have
increasingly felt the elusive properties of “expressivity” and “creative flow.”

18


	Introduction
	The FORAY Philosophy
	Hardware and Software
	Pure Synthesis
	Real-Time Composition
	Non-goals

	Influences
	Yotaro Shuto's 2020
	Hardware Modular Synthesizers
	Thomas Fay's Algorithmically Assisted Improvised Music

	Algorithmic Composition
	Harmony Model
	Chord Progression Generation
	Melody Generation

	Sound Design and Interaction
	One Big Patch Syndrome
	Mixing and Dynamics
	Sound Design
	Pacing

	Conclusions

