
Notes on Developing Personal Laptop
Improvisation Software

Nathan Ho

May 17, 2019

Abstract

This thesis describes the author’s philosophy on the creation of an
instrument for laptop improvisation, and a personal project, FORAY, that
embodies these principles. It employs completely minimal hardware
requiring no controllers or outboard gear. Musically, in support of its goal
as a live instrument, FORAY employs strictly synthetic sound design with
zero samples or recorded elements, and eschews the use of step
sequencers and piano rolls in favor of algorithmic composition methods.

Rather than an in-depth technical discussion of every aspect of the
constantly evolving FORAY system, this essay primarily focuses on the
process of developing and using the instrument. The hope is that aspects
of the project philosophy might resonate with other artists, and the
lessons learned while developing FORAY will serve as useful advice.

1 Introduction

The motivations and approaches to live creation of electronic music are highly
diverse and personal. With the advent of powerful modular computer music
environments, technically oriented musicians can devise their own musical
workstation tailored to their needs. When the system they develop reaches a
threshold of maturity, feedback loops happen between the artist and their rig:
their musical style motivates them to extend their workstation, they discover
surprising outcomes that shape their stylistic practice, in turn encouraging
them to develop the system further. The artist entering a dialog with
themselves as an instrument builder and as a musician is a spectacular
phenomenon unique to electronic music.

1



Years ago, as a programmer who had just started learning about
electroacoustic music, I had such a vision and began building my own live
system for laptop improvisation with fantasies that I would use and develop
it for years. I quickly discovered that it is a much harder endeavor than I had
imagined, and abandoned it months later when I grew discouraged about the
quality of its output. This grew into a cycle — restart project with delusions
that “this time around I’ll finally make the instrument I’ve been dreaming of!”,
realize that I have been working on it for weeks with no good musical output,
trash it, and start over.

Following an 18-month break, I started another iteration of the project,
titled FORAY, this time with a mind to avoid past mistakes and focus, above
all else, on the quality of the music I produced rather than grand visions of a
personal artistic revolution. After eight months of work on the software, I
debuted it with a hour-long solo performance, and for the first time the
project felt like an accomplishment.

This thesis serves as an informal reflection on my personal philosophy on
electronic music, some of the challenges faced while developing the project,
and some sparse technical details of the software. It is the guide that I wished
I could read before I started this journey.

I have mostly shied away from elaborating on the intense technical details
of sound design and algorithmic composition, since much of it is personal to
my work and constantly in flux. Although I acknowledge such details that
would be of interest to fellow computer musicians, FORAY is an artistic work
rather than a research project, and I am entitled to keep some secrets about my
personal process. I will exercise the right to draw boundaries for what I am
comfortable sharing in a publicly available article.

2 The FORAY Philosophy

Live electronics present infinite possibilities in the realm of technical setup,
and being productive in such an open-ended space requires working with
contraints. As my practice as a music technologist matured, I developed
preferences for qualities of my ideal electronic system.

The first, and most important, is productivity. I am known for having
perfectionist tendencies and have trouble resisting the urge to excessively
tweak my own work. An ideal music-making environment should be inviting
and conducive for making music, and discourage excessive tweaking. My
background is in piano improvisation, where the notes played in a recording

2



are nearly impossible to alter in post-production. Completely live creation of
music lends a finality to the product, and this is the most appealing aspect to
me of live electronics.

• Price: It should be as cheap as possible to build and maintain. The
advances in the past decades in CPU power and signal processing
algorithms have rendered expensive gear unnecessary for the creation of
quality electronic music.

• Durability: When I sit down to make music, I should not be worrying
about whether my software or hardware will break. It should not burn
out and stop working in five years.

• Portability: In support of Productivity, the system should be easy to
transport, set up, and tear down, and easily allow making music on the
go.

• Diversity:

• Surprise Factor:

2.1 Minimal Hardware

FORAY runs on a basic laptop, and live control is exerted using only the
laptop trackpad. The on-screen interface consists of a simple array of knobs
and buttons to control parameters and trigger musical events.

No MIDI controllers or other outboard gear are used. Confining the
system to software ensures the best price, portability, and durability, factors
which I consider critically important to a serious music technology practice.

Hardware interfaces are ubiquitous in both commercial and academic
electronic music production because of the immediacy of reaching out to a
physical knob. Immediate physical interfaces are beneficial to creative flow,
and indispensible for critical interfaces such as in live audio engineering (if a
mic starts feeding back, whoever is at the mixing board should be able to react
immediately). However, the convenience of purely software interfaces should
not be discounted for their portability and low cost.

Many electronic musicians employ commercially produced MIDI
controllers such as keyboards, faders, knobs, and grid controllers such as
Ableton Push. While such commercial products are likely the cheapest and
most durable options than any other form of outboard gear, they still add
complexity to the system and make it harder to transport.

3

mkfalcone
Highlight



Many academic live electronics performers develop homebuilt interfaces.
Some can be built relatively cheaply, but the real disadvantage is realiability.
From my experiences seeing performances and technical demos with custom
interfaces, creating a musical interface that achieves acceptable reliability is an
ambitious pursuit. It takes hard work and experience with electronics and
DIY fabrication to create a sturdy object that is guaranteed not to break ten
minutes before a performance.

Laptops have other sensors including a built-in microphone,
accelerometer, and webcam. Unfortunately, accelerometers and webcams
have variable quality according to the device. Light sensitivity has numerous
potential issues that depend on the environment. I currently do not make use
of the keyboard either — I have had success using only the laptop trackpad —
but I am open to adding keyboard control as the project develops.

Again in the interest of simplicity and portability, FORAY is strictly for the
creation of stereo music, since I normally do not have access to a multichannel
speaker setup.

2.2 Minimal Software

FORAY is built entirely in the free and open source SuperCollider
programming language. There are no other programs involved so that the
number of moving parts can be minimized.

Although SuperCollider is a powerful environment with a wide variety of
audio plugins, it lacks some high-quality DSP algorithms such as good
reverberators and compressors. I employ a handful of custom-written UGens.
One (a reverberator) has been publicly released and incorporated into the
SuperCollider project for others to use, and more are pending.

2.3 Pure Synthesis

FORAY uses only real-time audio synthesis, with no use of sampling or live
input.

Live input has material disadvantages. It requires the setup of a
microphone, which immediately opens up a number of potential issues: the
need to use an audio interface, the need for an environment with low
background noise, the danger of feedback when dealing with a speaker
system, and the cost of the microphone and cable. All these are points where
the system can fail.

4



Samples are not as problematic in my overall design philosophy, but I still
avoid using them. The process of selecting and auditioning samples is not
suitable for an improvisational environment, and samples lack the endless
parametric capabilities that synthesis has. Most importantly, I simply have a
personal preference towards synthesis and I enjoy the challenge of creating
entirely synthetic music.

2.4 Real-Time Composition

FORAY sequences notes and sound effects with algorithmic composition
methods. No timeline views, piano rolls, or step sequencers are used.

I eschew timeline views due to my concerns with productivity. The
timeline editing features of DAWs encourage perfectionist tendencies, making
it hard to resist endless tweaking. Compare a recorded improvisation on an
acoustic instrument — the result is nearly impossible to change or tweak,
forcing the artist to embrace its imperfections.

My musical aesthetics lean toward highly complex, non-repetitive music
that constantly changes and evolves. Step sequencers and piano rolls are
therefore not suitable for my work.

In place of repetition and traditional note entry, FORAY employs a slew of
methods for real-time algorithmic composition, parametrically controlled in
real time. In this way, creating music in FORAY is similar to conducting an
improvising ensemble.

There are many musical works that use algorithmic generation as a facet of
the artwork’s premise and presentation. With no intentions to criticize such
works, I do not use algorithmic composition to publicize or promote my
work, but rather because of the convenience.

2.5 What FORAY is not

Research: FORAY is not a research project. It has no novelty in signal
processing, interface design, or algorithmic composition. It is not a project
built for other people. FORAY is a system built solely for my own musical
practice, so it is constantly undergoing evolution.

Performance: I am careful to avoid the term “performance” when
describing FORAY, because a “performance” recalls the history of acoustic
music traditions which have aspects of visual engagement. I have used
FORAY on stage, and there is an undeniable visual experience to me being on
stage making various strange facial expressions, but engaging visuals are no

5



goal of the project. A tenet of my system — one which I hope is not too
delusional — is that good-sounding music is sufficient for an enjoyable
listener experience.

The choice to use fully improvised electronics is rooted in the desire for
productivity that comes from escaping timeline views and embracing
imperfections and mistakes that inevitably occur in live music.

Live Coding: Despite the fact that I use similar hardware and software
tools, FORAY is not a live coding project. There is no live design or
modification of algorithms, a process I find unnecessarily slow.

2.6 Musical Style

FORAY’s musical style falls under Western art electronic music with heavy
influences of ambient music. The style uses free-floating rhythms, traditional
harmony, and a lack of repetition and droning in favor of constant evolution.

2.7 Prior Art: Yotaro Shuto’s 2020

The primary inspiration for FORAY is Yotaro Shuto’s 2020, a live performance
software instrument developed for macOS. The alpha release was in 2015.
Immediately impressive about this interface is its maximalism, featuring
hundreds of knobs with no menus or modality — it is intended as a complete
music-making solution where every parameter is in reach. 2020’s
documentation contains a particularly striking passage on live electronic
performance [sic]:

2020 is like a musical instrument. to become a master of it, you’ll
need time, inspiration, and endurance.

5 minutes : Install it in your computer.

1 hour : You will slightly understand how is it.

1 day : You will be able to run through all functions.

1 week : You will be able to compose FIRST SONG.

1 month : You will be able to acquire Tips & Tricks.

6 month : You will be ready to perform on a stage!

1 year : 2020 will be a part of your body.

FORAY essentially began as my own personal take on 2020 — a live
environment where everything is within reach. Like FORAY, 2020 contains

6



Figure 1: A screenshot of the alpha version of the 2020.

features for randomized sequencing and sound design. Unlike FORAY, 2020
is heavily sample-based, employs a steady tempo, and contains
“semi-modular” features.

3 Prior Art: Eurorack

Eurorack refers to a large family of hardware products for sound synthesis,
sequencing, and processing that can be patched together with cables.

Like FORAY, Eurorack rigs are strictly for the real-time creation of music,
and lack timeline views. The general direction of the Eurorack market also
overlaps significantly with areas of interest in the FORAY project, specifically
those of experimental sound design and algorithmic composition.
Algorithmic composition products include Mutable Instruments Grids, a
generative drum sequencer.

7



4 Sound Design and Mixing

4.1 One Big Patch Syndrome

I consider FORAY a successful project, but years of failure precede it. I made
at least four or five previous attempts at creating a live electronics rig, which
all failed for several personal reasons. I lacked experience with sound design
and production, and was still in the process of discovering my style. The most
critical mistake in these failed attempts was One Big Patch Syndrome.

One Big Patch Syndrome happens when an artist overthinks the generality
of their system and starts developing technical scaffolding instead of making
music. “If I just create the one big patch that allows me to make any sound I
want, I’ll finally achieve musical expression in my electronics!” This attitude
just leads to frustration, and usually bad music. For example, in one earlier
attempt at an electronics rig, I started by attempting to classify all electronic
sounds I could think of, organizing them into a set of categories, and mapping
different parts of a MIDI keyboard to different categories. I will leave it to the
reader to imagine how musically interesting the result was.

To avoid One Big Patch Syndrome, stop thinking about whether the
expression of your system is optimal and whether it achieves full generality in
timbre. Instead, just make music. Design some sounds and create a coherent
and high-quality musical work. Then design some more sounds, and add
more and more parameters. When you have great musical materials, live
control will immediately follow. Worrying about the “diversity” of your patch
in the early stages of the project will paralyze its development.

The first steps toward the creation of FORAY was a set of three different
patches that I realized had some properties in common, and could be merged
into a single synthesizer with a flexible set of parameters. I then made a little
GUI interface with knobs to dial in parameters. Over time I added more
parameters that seemed interesting, removed parameters that felt less
musically useful, and eventually added a preset system for saving and
loading settings. I used a very basic algorithmic sequencer that simply picked
random chord tones, and slowly made it smarter and more musically
sophisticated. By starting with sound design I was happy with and
incrementally building the system around it, I ended up with my first ever
success in live electronic rig development.

As specific advice for experienced software engineers building their own
workstation: code quality should be extremely low on the priority list when
building a personal musical system. When developing custom music

8



software, work quickly ands sloppily, focusing on creating sound rather than
making well-architected software. There are many technologically oriented
artists who possess only rudimentary coding skills, but are still able to
produce successful works because they focus on the quality of the results.

4.2 Mixing and Dynamics

Dynamics are a particular challenge for musicians working with real-time
generative and algorithmic music. Heavy use of algorithmically generated
note sequences and random modulation makes the balance between different
elements inherently unpredictable, and can only be controlled after the fact.

Avoidance of clipping is of course important, and I added a limiter as a
safety net in the early stages of the project. Quickly I realized that the limiter
could be driven hard as a creative effect. All elements are being mixed in
real-time through the limiter, rather than the limiter being applied as a
downstream stage after mixing. Severely overdriven limiters often create
sweet spots where two elements interact with each other and fight for
headroom. FORAY’s architecture also places the limiter after reverberation,
which has an interesting effect on the perception of space.

Seasoned audio professionals frown on aggressive master compression,
usually preferring to carefully fine-tune balance at the stem level rather than
allow an algorithm to set levels for them. While good advice for more
traditional audio production settings, this is absolutely not something I am
concerned with as an experimental electronic musician. Imperfect mixing is
something to be expected in a live rig with unpredictable generative elements,
and I am more than happy to allow an algorithm to exert control over
dynamics so I can prioritize sound design and arrangement. Furthermore, the
stylistic aims of FORAY are huge, maximalist, and intended to be listened at a
high volume, and the sound of heavy compression is part of its character.
Other forms of electronic music, however, may benefit from quietness and
high dynamic range, and may prefer the use of a limiter only as an
anti-clipping measure.

In the master bus, I use two soft-knee limiters in series: first a “color”
limiter with a fast attack and release, and a second “mastering” limiter with
100ms attack and 1s release and a bit of lookahead. Both are set to nearly the
same threshold. The color limiter is intended to be driven hard to create the
aforementioned dynamic interactions, and the mastering limiter tames
transients so the output track is slightly brickwalled. There is an additional 10

9



dB of headroom just to be absolutely safe from digital overs. I don’t find any
need to adjust these limiter settings while playing, so no controls were created
— just a visualization of the gain reduction amount of the color limiter.

Exploring the use of limiters in the creation of musical works, I arrived at a
playing style I am satisfied with. During quieter sections of works, I tend to
stay 5-10 dB below the limiter threshold. During louder sections I aim for
moderate gain reduction of 3-5 dB, and in climactic moments I drive the
limiter to 10 dB or more. This way, the overall work is dynamic, and the
loudest sections are appropriately loud.

4.3 Sound Design

Sound synthesis is a personal practice that can only be developed with
experimentation over time, so I am most comfortable keeping secret the
specific sound design patches I created in FORAY. However, I am willing to
describe an overarching philosophy on how I synthesize sound.

My personal go-to sound design strategy is the “effects cocktail”: various
combinations of filter, chorus, phaser, flanger, reverb, sample rate reduction,
pitch shifting, saturation, multitap delays, wavefolding, extreme compression
and limiting, granulators, and feedback across any of those. I tend to use
simple sound sources and let the effects sculpt them into something more
complex, making this an extension of subtractive synthesis.

With overcomplicated effects chains, every element in the chain adds its
own flavor, especially if it contains artifacts of some kind. The signal path
accumulates a cascade of imperfections and complexities, resulting in
wonderfully organic sounds. It can be used subtly as well as dramatically —
by mixing a small amount back into the dry signal, a bit of space and
character is added.

Two effects in particular, reverb and compression, are particularly
powerful ingredients in this methodology. Synthetic sounds tend to be
completely dry, so even a small amount of reverb can give the impression akin
to the body of a real instrument. (The traditional audio mixing advice of
sending all tracks at various levels to a single reverb, while useful, is less
important when dealing with synthesis-heavy music.) Furthermore, reverbs
create complex signals that have a butterfly effect on downstream elements in
the signal path. There is, of course, such a thing as too much reverb, and I
often have to suppress the habit of overapplying it to compensate for
otherwise bland synthesis patches.

10



Compression serves a utilitarian purpose of taming unpredictable
variations in volume that effects cocktails might create. However, when
pushed to the extreme, compression brings out low-amplitude details from
upstream effects.

I am particularly fascinated by the possibilities when applying an effect
and then imperfectly reversing it. These include pitch shifting up and then
down, compression followed by expansion, reverberation followed by crude
dereverberation (i.e. noise gating), etc.

Modulation is also a huge part of interesting sound synthesis. I make
extensive use of random LFOs created by starting with a random impulse
train, using that to trigger random sample-and-hold noise, and then
smoothing out the signal with a one-pole lowpass filter. The two controls for a
random LFO are its rate and its smoothness. This way, I have control over a
continuum from hard glitches to smooth, organic wobbles.

Multiple parallel copies of the same effect or oscillator with slightly
different parameters.

4.4 Pacing

Once FORAY reached a level of maturity where I could create large-scale
musical development, the pacing of musical works in a live environment
became a concern. This is a lesson I learned when I presented FORAY live at a
forum — in my nervousness, I burned through the options I had far too
quickly, immediately reaching stasis. States of frustration where I cannot
decide where to go next are detrimental to creative flow.

A timer added to the software’s GUI helped with awareness, but solving
pacing issues is largely a human factor. I come from a background of piano
improvisation, where I can do spontaneous composition from intuition.
However, since I lack experience improvising on the system that I built, I have
to relearn how to pace my works. To get satisfactory development, I found I
had to think several steps ahead — how will the piece change over the next
five to ten minutes? What is the destination I am trying to arrive at?

Pacing is also perceived differently between the artist and audience. I have
been listening and experimenting with these patches for months, but the
listener has only been hearing it for 10 seconds. The use of generative
sequencing and highly dynamic sound design means that the patch is still
evolving quite quickly even if I am not actively changing any parameters.
However, during such moments, I know how the patch will develop, and I

11



reach impatience much quicker. When I realized how this distorted
perspective impacted my music, I started correcting for it by simply
developing slower. I lingered much longer on points that I found pleasing. I
avoided immediately activating every instrument all at once, instead waiting
extended periods of time to introduce them.

By working in a goal-oriented, time-aware manner rather than aimlessly
wiggling knobs, and by staying patient and moving slowly, I immediately
noticed improvements in the form of my music, a reduced frequency of
“stuck” moments, and a much easier time improvising for an hour or more
without running out of material or dragging any section out for too long.

Nevertheless, stuck states are still unavoidable. The addition of a preset
system proved hugely beneficial as an easy way out of such points, provided
that they are not overused. Extremely interesting results happen when
crossfading the parameters of distant presets — both settings were
human-designed, and intermediate settings tend to have the qualities of both,
but a sound completely unpredictable to the designer.

Overall, good pacing with live generative electronics is a problem of
finding a balance between interesting development and patient use of
material. My personal experiences are that I move too eagerly and had to
compensate by slowing down. Other artists might find they have the opposite
problem. Either way, developing an awareness for pacing is an important
aspect of electronic improvisation, and presents specific challenges for artists
building their own live workstations.

12


