

California Institute of the Arts

Touchpoint:

Effects Processing as a Method of

Synthesis and a Performance Practice

by

Nicholas Khan Suda

A thesis submitted in partial fulfillment for

the degree of Master of Fine Arts

in the

Herb Alpert School of Music

Music Technology: Interaction, Intelligence & Design

i

Supervisory Committee

Owen Vallis, Ph.D

Mentor

Dr. Ajay Kapur

Committee

Jordan Hochenbaum, Ph.D

Committee

ii

iii

Abstract

This thesis suggests that effects processing has developed a fundamental role in

contemporary music styles. It has become both integral and widespread enough to the point

where it could be considered a method of synthesis unto itself. And yet, possibly because of the

nature of their interfaces, effects processors have yet to be appropriately embodied by

themselves in live performances of music.

Creative effects processing can often be very elaborate, requiring the use of many

different devices in a long chain, and so the process is mostly pre-prepared in execution. If we

think of creative effects processing as a mode of synthesis, then what are its basic building

blocks? The increasing use of this kind of sound design in the compositional process has

produced a problematic representation of such music in a live concert context.

Live concerts imply the real-time performance of instruments as a complete portrait of

the music being performed. So, how can we wrench the post-processing element away from

being the additional responsibility of a sound engineer, invisibly managing knobs, faders, and

pre-recorded cues? Can this important facet of the concert be represented as a musical

instrument? Can it be performed in real-time amongst everything else onstage?

What sort of interface befits this kind of performance? Does the style of music itself

change by adding this instrument into an ensemble? Furthermore, how did we get here? What

are some devices from the past that have culminated toward this idea of a performative effects

processor? What are the shortcomings of the use of these earlier devices onstage? Why are they

"insufficient?"

In this thesis is presented a new musical instrument called Touchpoint, which exists as

several pieces of software. Some of this software runs on a computer, which is responsible for

dynamically arranging the use of effects into on-the-fly chains, acting as the "effect-based

synthesizer." Other software runs on a tablet device, which acts as the interface of the

instrument. The touchscreen of the tablet becomes to the "effect-based synthesizer" what the

fretboard is to the guitar; what the mouthpiece is to the trumpet; what the keyboard is to the

piano.

iv

In order to corral the complexity of dynamically chaining many smaller parts together as

an act that is as immediate as playing a musical instrument can be, each of the available parts

within this system is programmed as a piece of smaller software code that executes digitally on

the host computer. Why is this model - a software engine divorced from a software interface -

advantageous over a single piece of "closed" hardware? What sort of technological and historical

landmarks in computer music software have led to this design style?

The technical construction of this instrument is then described in further detail for

several benefits. A broader simplification about signal processing that was discovered in

Touchpoint's development is one aspect. The technical justification behind thinking about the use

of effects processors as a form of electronic music synthesis is another element. Several

intriguing use cases that reveal the instrument's versatility are described thereafter, which is aided

by an explanation of the design of each of the individual processors. Furthermore,

contemplating the disconnection between interface and engine reveals the highly flexible

placement of the instrument within an ensemble of musicians, which is a component that is

arguably unique to Touchpoint.

The author then reflects on several concerts featuring Touchpoint that have tried some of

these diverse configurations out, discussing lessons learned, and inspirations for future design

changes in service of these lessons. The general plans for the future of the instrument are

discussed in a conclusion, which lays the groundwork for a long-term relationship in developing

and improving Touchpoint.

v

Acknowledgments
I would like to thank Ajay Kapur for being the real deal. He is a true-to-form opportunity

creator, empowerer, mentor, and believer. He finally got me to learn real text programming in a

way that was tailor-made for my experience level, after I had been saying that I wanted to learn

my whole life without doing so. He proved to me that straddling between the academic, artistic,

and commercial worlds is possible, and that it's a really cool position to be in. He saw that I had

a momentum, and convinced me to stop slowing it down and to come to CalArts - less I risk

losing it - and pushed me harder than I thought possible.

I would like to thank my friends and advisors Owen Vallis and Jordan Hochenbaum for being

the first people I met who showed me that I'm not the only one that this kind of stuff is

important to. Kindred, modest, humble spirits who insist on letting the person's work speak for

the person. I don't think I'll ever be quite as even-tempered as you two, but I hope that I can be

as accomplished and helpful. Thanks for giving me classes to teach, thanks for sending me to

Berlin, and thanks for helping me define and attain the skillset - and the portfolio - that I always

wanted to have.

Thanks to Dr. B for turning another 18 year-old Aphex Twin fan like me into an aspiring

academic and exposing me to the history of academic computer music at so many angles.

Copying large swaths of your lectures really makes it sound like I know what I'm talking about to

some people. Your live remix of "Synapse" with a Launchpad, a Wii Remote and a few instances

of Stutter Edit at the MIT Media Lab for Barry Vercoe's retirement was a formative moment for

me. I will keep pushing forward thanks to the spark you lit for me.

Thank you to Max Zagler, Egbert Jürgens, André Estermann, Christiane Küstermann, Franziska

Hollingworth, Mike Gao, Vadim Zavalishin, and every other co-worker and friend that I met in

vi

Berlin during my time at Native Instruments. Your help and advice was invaluable and life-

changing.

Thanks to Colin Honigman and Chris Knollmeyer for getting to know my instrument, and

performing in a Touchpoint Series concert with me. I use both of you as role models for patience

and hard work to aspire to.

I would like to thank Benn Jordan and Richard Devine for their influence and friendship,

starting barely in my teenage years up to the present day. It's strange to have your famous idols

also be acquaintances as you're growing up, and I don't think too many other people have had

quite as profound an influence on my sensibilities as these folks.

I would like to thank my life-long best friend John Platter, and my fiancée Amber Lepley, for

their love, and their patience, and their investment. Here's to many more years. I love you.

Shout out to William Basinski for writing The Disintegration Loops series, and Takagi Masakatsu

for Journal for People. These two records were the soundtracks of writing this document, especially

in the Newhall location of the Santa Clarita Public Library, which also deserves some

recognition as Thesis Central.

Last, and most importantly, thank you to my parents, who never stopped buying me the toys

that make noise when I was little, who let me make racket as loud and for as long as I wanted,

without ever stopping me, and who have provided an unreasonable amount of support and

belief and opportunity for me to live my life working from the weird impetus that has motivated

my entire path so far.

vii

Contents

Chapter	
 1	
 Introduction:	
 The	
 Music	
 of	
 Effects	
 Processing ...1	

1.1	
 The	
 computerization	
 of	
 music	
 recording...	
 and	
 performance 2	

1.2	
 Effects	
 processors	
 and	
 new	
 musical	
 genres... 4	

1.3	
 Fitting	
 into	
 the	
 taxonomy	
 of	
 musical	
 instruments .. 9	

1.4	
 Differentiating	
 from	
 precedent	
 signal	
 processors ..10	

1.5	
 Summary..16	

Chapter	
 2	
 History:	
 The	
 Unit	
 Generator	
 and	
 Software	
 Instruments........................ 19	

2.1	
 Max	
 Mathews,	
 Music-­‐N,	
 and	
 cross-­‐platform	
 functionality ..20	

2.2	
 Patches	
 in	
 visual	
 programming..23	

2.2.1	
 The	
 Max	
 patch,	
 lingua	
 franca	
 of	
 computer	
 music ... 24	

2.3	
 Software	
 plug-­‐ins ..25	

2.3.1	
 Reaktor .. 26	

2.4	
 Diverse,	
 dynamic	
 interfaces	
 for	
 virtual	
 instruments ...28	

2.4.1	
 Academic	
 computer	
 music	
 conferences ... 28	

2.4.2	
 The	
 commercial	
 product	
 sphere .. 30	

2.5	
 Smartphones,	
 tablets	
 and	
 the	
 app...32	

2.6	
 Dynamic	
 multi-­‐effect	
 plug-­‐in	
 processors..35	

2.7	
 Summary..36	

2.8	
 Introducing	
 Touchpoint ..38	

Chapter	
 3	
 Touchpoint... 39	

3.1	
 Introduction..40	

3.2	
 The	
 synthesis	
 technique...42	

3.2.1	
 Synthesis	
 via	
 non-­‐linear	
 processor	
 combination ... 42	

3.2.2	
 The	
 "perceptual	
 modulation	
 spectrum" ... 44	

3.3	
 The	
 interface ..51	

3.3.1	
 Object	
 choices... 52	

3.3.2	
 Input	
 selection ... 63	

viii

3.3.3	
 Range	
 scaling .. 63	

3.3.4	
 Touch	
 interaction ... 63	

3.3.5	
 Performative	
 linear	
 mixing .. 65	

3.4	
 Multiplayer	
 functionality ...67	

3.5	
 An	
 example	
 workflow..69	

3.6	
 Conclusion ...71	

Chapter	
 4	
 Performances.. 75	

4.1	
 December	
 2013	
 Grids,	
 Beats	
 &	
 Groups	
 duet;	
 Sam	
 Botstein	
 on	
 Turntables..............76	

4.2	
 Colin	
 Honigman:	
 Creative	
 Electronic	
 Music	
 Ensemble	
 member78	

4.3	
 Touchpoint	
 Series	
 1-­‐3,	
 February	
 -­‐	
 May	
 2014..79	

4.3.1	
 Series	
 #1:	
 Solo	
 Performance.. 80	

4.3.2	
 Series	
 #2:	
 Multiplayer	
 Session .. 82	

4.3.3	
 Series	
 #3:	
 Audiovisual	
 Installation ... 86	

4.4	
 California	
 Electronic	
 Music	
 Exchange	
 Concert	
 series	
 @	
 UCSD,	
 April	
 201491	

4.5	
 Conclusion ...92	

Chapter	
 5	
 Conclusion.. 93	

5.1	
 Primary	
 Contributions..96	

5.2	
 Final	
 Thoughts ...96	

5.3	
 Future	
 Work ...97	

Bibliography ... 99	

ix

List of Figures

Figure 1. Kraftwerk's stage setup in the 1970s, 1990s and 2010s... 3	

Figure 2. Steinberg's Model-E, left, and Karlette, right (1996)... 5	

Figure 3. Pro Tools session, "Fahrenheit Fair Enough" by Telefon Tel Aviv (2001)...................... 6	

Figure 4. Deadmau5 in concert (2013)... 8	

Figure 5. Tree visualization of the Hornbostel-Sachs instrument classification system 9	

Figure 6. Signal path of a guitar effects pedal board.. 11	

Figure 7. KORG KAOSS Pad KP2 (2002)... 12	

Figure 8. Two full racks of recording studio rack-mounted effects processors 13	

Figure 9. A typical Eurorack modular synthesizer setup... 14	

Figure 10. Minihost Modular by Image-Line (2014) ... 15	

Figure 11. Max Mathews with Radio Baton... 19	

Figure 12. Excerpt of "Trapped in Convert" by R. Boulanger, written for Music 11 (1979)......... 21	

Figure 13. Typical Max patches... 23	

Figure 14. The Evolution 461C, what most controllers looked like before Ableton Live 25	

Figure 15. The Monome (2006) - the influential minimalist software controller 26	

Figure 16. reacTable, mid-performance ... 29	

Figure 17. KORG's first edition NanoKONTROL (2008) .. 30	

Figure 18. The controller sprawl of Tim Exile's live setup (2009) .. 30	

Figure 19. The original Lemur Input Device by JazzMutant (2002) .. 31	

Figure 20. TouchOSC, running on iPad and iPhone ... 33	

Figure 21. Lots and lots of performative iPad apps... 33	

Figure 22. Lots and lots of multi-effect processor plug-ins.. 35	

Figure 23. Touchpoint idea web ... 39	

Figure 24. The audio, control, logic paradigm of modular synthesis .. 41	

Figure 25. Comparison of order in Non-Linear Systems .. 43	

Figure 26. The electromagnetic spectrum ... 44	

Figure 27. The Karplus-Strong plucked string algorithm ... 45	

Figure 28. The upper portion of iZotope Stutter Edit's GUI.. 46	

Figure 29. How Touchpoint's quantization indices are represented in Reaktor/Lemur 47	

x

Figure 30. A simplified summary of multi-range modulation perception .. 48	

Figure 31. "Side B" configuration page of Touchpoint version 0.5.10a in Reaktor 49	

Figure 32. Version 0.5.10a of one of Touchpoint's main Performance Pages .. 51	

Figure 33. Effect selection drop-down menu per effect slot.. 52	

Figure 34. Top-level overview of the Amplitude Modulation effect in Touchpoint 53	

Figure 35. The Amplitude Modulation module's guts... it's just an amplifier 53	

Figure 36. Lemur-side effect-specific menu for the AM effect... 54	

Figure 37. Top-level overview of the Frequency Modulation effect in Touchpoint 56	

Figure 38. Pitch tracking algorithm, modified from Tim Exile's The Mouth.................................. 57	

Figure 39. Semitone modulation scaler algorithm.. 57	

Figure 40. Lemur-side effect-specific menu for the FM effect ... 58	

Figure 41. Top-level overview of the Comb effect in Touchpoint ... 59	

Figure 42. Top-level overview of the Feedback type of the Comb effect in Touchpoint 60	

Figure 43. Lemur-side effect-specific menu for the Comb effect... 60	

Figure 44. Inside the Feedback Type of the Comb effect .. 61	

Figure 45. Inside the Stutter Type of the Comb effect .. 62	

Figure 46. Input Selection/Synthesizer page of Touchpoint's interface.. 63	

Figure 47. A typical Global sub-page... 64	

Figure 48. The performative Mixer of Touchpoint, versions 0.6 and below 65	

Figure 49. Single- and multiplayer software configurations of Touchpoint... 67	

Figure 50. "multicastingHost.ck" running in MiniAudicle.. 68	

Figure 51. Graphic depicting rough visual representation of sound design in Touchpoint 69	

Figure 52. Sam Botstein (turntables) and the author (Touchpoint) in concert, 2013......................... 76	

Figure 53. The author in Touchpoint Series #1: Solo Performance, February 2014 80	

Figure 54. Suda, Knollmeyer, & Honigman, Touchpoint Series #2, March 2014 82	

Figure 55. Flowchart illustrating the setup of Series #3: Audiovisual Installation................................ 86	

Figure 56. Selection of various results from Series #3: Audiovisual Installation 88	

Figure 57. A simplified iPad interface done in openFrameworks for Series #3 90	

xi

List of Tables

Table 1. Feature Comparison Chart of Similar Audio Plug-Ins, October 2012.............................. 40	

Table 2. List of Interface Parameters, Global and Effect-Specific.. 52	

Table 3. Perceived Effects of Modulation of Gain by Sinusoid and Pulse Wave........................... 53	

Table 4. Perceived Effects of Modulation of Pitch by Sinusoid and Pulse Wave........................... 56	

Table 5. Perceived Effects of Buffer Repetition, with and without Feedback 59	

1

Chapter 1

Introduction: The Music of

Effects Processing
(For the purposes of this document, "effects processing" is defined as the objectification of a sound source through

various electronic modification techniques, via a secondary process. This can describe techniques with constantly

streaming input and output, as well as techniques that capture a duration of incoming sound before manipulation,

whether in advance or on-the-fly.)

This chapter describes the increasingly important role of creative effects processing in

contemporary music. The computerization of music recording is identified as the key accelerator

of the relationship between effects processing and the sound of contemporary music.

Virtualization, which is an attribute of computerization, is also discussed for its disembodying

effect on musical instruments, and the problem that it creates in live performances of music.

A series of examples in which the creative application of effects processing influenced the

creation of a new style of music are detailed. Then, a particular musical genre - where the

application of automated effects processing has become so elaborate that it describes the genre

as a whole - is examined. Altogether, it is posited that computer-based music production has

obfuscated the nature of live performance in an as-yet unsolved way. Consequently, the need to

re-consider effects processing as a musical instrument-like facet of concert music is then

suggested.

2

An argument is made that a system of effects processors could be made "performative" in order

to more accurately classify the effects processor as a musical instrument. Formal methods of

musical instrument classification are incorporated, in order to discuss the additional ways in

which classifying a processor as a musical instrument is problematic.

A survey of existing effects processing interfaces is offered, including a discussion of their

shortcomings as musical instruments. In reflecting back on the effects of computerization, a

potential way forward in thinking about how to re-embody the effects processor as a new kind

of musical instrument is suggested.

1.1 The computerization of music recording... and performance

"But the next Beck or Jimi Hendrix may be sitting in a bedroom with a computer and a guitar at this very

moment, creating sounds that will be sprung on the world in the next year or two. "What's going to happen," [...]

"is that in three or four years we'll wake up one day and say, 'Hey, wait a minute, I just realized that everything

in the Top 10 was done inside a computer.'" "

- "Technology Puts the Recording Studio on a Hard Drive", New York Times, 1999 (Hearst)

While the electro-acoustic manipulation of musical material is as old as the advent of audio

recording itself, the creative use of signal processors in music - in composition, in recording, and

in performance - has drastically accelerated as a result of music recording's computerization.

Devices that cannot - kinesthetically speaking - be performed like a musical instruments have

been used in concerts for much of the 20th century. Big boxes that contain waveform

generators, reel-to-reel tape players, ring modulators, tape loops, echoes, and delays were feasibly

(if impractically) used in concert. These devices are treated as an array of machines whose

routing was somewhat inflexibly pre-arranged. Their controls are manipulated onstage in a

musical way.

The nature of recording electronic music of the time - of capturing pre-prepared performances

with these tools, and editing their recordings on magnetic tape - was not so disconnected from

the offerings of live concert recitation that nothing could be gained from some sort of onstage

performance. The kinds of interactions with other musical instruments that can be performed

3

inside of or alongside this electro-acoustically manipulated content are rich and musically

conversational.

At the turn of the 21st century, the audio recording process shifted from magnetic tape to audio

files on the hard disk drive of a personal computer. At the same time, the processing power of

these computers became sufficient enough that most - if not all - recording tools became

virtualized. From the aforementioned signal generators and processors that augmented musical

performances creatively, to musical instruments themselves, all musical material could eventually

be convincingly replaced with automated instructions given to software emulations of physical

devices. All music that could be described as traditional instrumental performances could be

emulated digitally.

It is now not only easier and faster to create complex musical moments - moments that can even

appear to be entirely acoustic - but it is also trouble-free and nearly instantaneous to render,

record and edit it in very complex ways. Thanks to the advent of parametric automation and

non-linear editing, music production became much more offline in nature. Thus, the creative use

of DSP (Digital Signal Processing) has accelerated both in the studio and in concert, despite a

lack of a physical representation of the essential facets of the music in concert recital.

Figure 1. Kraftwerk's stage setup in the 1970s, 1990s and 2010s

In Figure 1. Kraftwerk's stage setup in the 1970s, 1990s and 2010s, the growing complexity of

creative signal processing in electronic music that has happened as a result of computerization -

as well as the ever-shrinking, digital transformation of the physical footprint of musical

equipment - is documented in the changes in the onstage rig of one electronic music band over a

forty-year period. What started in the early days of the 1970s as an array of keyboard

synthesizers, tape delays, and acoustic instruments like flutes, shifted into an entire recording

studio's worth of rack-mounted signal processing gear on wheels by the 1990s. By the 2010s,

both the instruments and the signal processors lived onstage as programs running on laptop

4

computers, visible only to the performing musicians. Where once live performances used to

define the nature of a recording, now the process of recording dictates the content of a live

performance.

1.2 Effects processors and new musical genres

Much of the popular music of the 20th century is significantly defined by the creative use of

signal processors. In many cases, many new genres of music came to be defined even more by

their use of certain effects processes, more so than the style of the instrumental performances.

For example, from the spring-reverberated surf rock of the 1950s, to the plate-reverberated

progressive rock of the 1970s, to the digitally reverberated (and gated) ballads of the 1980s, there

are many genres of rock music which are at least partially defined by their use of state-of-the-art

reverberation technology. But the importance of electronic reverberation is but one of the many

sounds of creative effects processing that has penetrated mainstream music culture throughout

recent history.

The creative manipulation of a delayed looping-tape playback is one of the most crucial elements

of Jamaican dub music of the 1970s, distinguishing it from the reggae music that preceded it.

The carrier and modulator-driven techniques of the vocoder and the talk box have entered the public

consciousness several times since the 1970s, from Peter Frampton to Roger & Zapp, Kraftwerk

to Daft Punk. This same sort of idea recently reared its head again in the 2000s, with the Auto-

Tune sound made popular by Cher in her song "Believe," and then later by R&B artists T-Pain

and Akon. Turntables and samplers dominated the sounds of the 1990s. The record-scratched

turntable drum fills of bands like Incubus and the sampler solos of artists like DJ Shadow

introduced the idea of the performative manipulation of pre-recorded sound playback into the

lexicon of musical performance techniques.

The innovations of computer-based recording in the 21st century were manifest in computer

programs called DAWs (Digital Audio Workstations). The processor power of personal

computers of the 2000s was now sufficient enough to handle real-time, high-quality digital audio

streaming, sound synthesis, and signal processing. As a result, new software companies created

5

an entirely new industry based on the emulation of musical equipment to be used inside the

DAW.

These products, such as the ones seen in Figure 2, came to be known as "plug-ins," due to the

modular nature of their inclusion within the software that they work within. Once the emulation

of plug-ins reached a certain point of sonic indistinguishability from their physical counterparts,

this removed the necessity for many devices, be they musical instruments or effects processors,

to even exist physically. Because the emulations are just instances of software code, they can be

instantiated into infinity, in any combination desired.

Figure 2. Steinberg's Model-E , left, and Karle t te , right (1996)

Rather than physically existing on a slice of magnetic tape, the recording process now lives in

hard disk storage, which is modifiable to great precision. In addition to being heard, each

recording was now also perceived visually, as a waveform on the computer's display. Each

recording could be iterated into new audio files, without destructively degrading the original

recording. Features such as timeline-based automation and the ability to infinitely micro-edit and

modify a single audio recording to the heart's content invited the creative use of signal

processors to become much more elaborate than before.

6

Figure 3. Pro Tools session, "Fahrenheit Fair Enough" by Telefon Tel Aviv (2001)

This emergent culture of infinitely-precise audio editing and the potentially endless opportunity

for iterative sound design cumulated in the glitchy, "post-digital" (Cascone) style of IDM

(Intelligent Dance Music) in the 1990s and 2000s. As demonstrated in Figure 3, artists such as

Aphex Twin, Squarepusher, and Telefon Tel Aviv placed destructive processing and re-

processing of the same material, offline and via the personal computer, as the central mechanic

of composition. Though experiencing music is an art form that occurs over time, in the case of

IDM, the act of recording it can now be thought of more like putting together an abstract,

pointillist, mixed-media collage made of variously processed bits and pieces of unrecognizable

samples, rather than painting a realistic oil portrait made of long, instrumental performances.

In some respects, this style is so transformative to its original source material that the source

itself is totally irrelevant. A certain sound's "starting place" could have been a blast of white

noise just as much as it could have been a trumpet performance recorded in-studio by a

performer. In this music, the domain of live performance is pushed to a total impossibility, since

nothing about the composition was realized performatively. It is the music of virtuosic sound

design and computer editing, rather than of virtuosic instrumental performance.

7

IDM is an extreme example of how the DAW - and the infinite signal-processing potential it

allows for - has changed music composition. However, no style of mainstream popular music

has survived the switch to computer-based recording without somehow incorporating the tools

of computer-based music. Whether through pitch correction, drum sample replacement, using a

virtual piano or algorithmic bass player, or framing the hook of a song around a signal

processing and editing-based technique, some (or many) facets of DSP has augmented popular

instrumental music moving forward.

Now, elaborate computer-based techniques are everywhere in commercial music. This includes

sounds like the varispeed record drop effect, which has become incredibly widespread in modern

dance pop like Black Eyed Peas, Lady Gaga, and Ke$ha ("Tik Tok"). The buffer-based glitch edit

effect - which involves the rapid repetition of a moment of audio so small that it would be

impossible to cut with magnetic tape - permeated pop music production of the 2000s, from boy

bands like N*SYNC ("Pop") to the rock group Linkin Park ("In the End"). These techniques are

also found in popular musics outside of the Western world, from Indian and Middle Eastern to

African and Far East Asian styles. They are one of the core characteristics of contemporary

popular music worldwide.

Consequently, popular music, which is typically presented to large concert audiences as ensemble

music, has developed a growing reliance upon virtual technologies that have no physical form. In

an era where so much popular music is defined by computer-based music production techniques

that do not involve real-time performance, a lot of music is presented somehow reconstructed,

mimed, or re-imagined in the live concert context (de Moraes; Sanneh). Elements which cannot

be overtly pinpointed to an instrumental origin are blanket categorized as "magic," (Schloss) or

glossed-over in high-budget production spectacles, like that seen in Figure 4.

8

Figure 4. Deadmau5 in concert (2013)

The increasing role of immersive visuals is apparent. Again, the images of Kraftwerk in Figure 1

are referenced. Where there was nothing more than each band member's name in neon lights in

the 1970s, there are now four screens of synchronized animations by the 1990s. Kraftwerk's

modern day performances now issue 3D glasses to every member of the audience. These

performances are dominated by an immersive visuals experience that is operated by one of the

four core band members as his sole responsibility. As the physical act of reciting this music has

become progressively more disembodied, the importance of accompanying visual content has

become louder.

Given the evolution of live concert performances away from instrumental performance and

closer to pure spectacle, there is therefore the desire to come back to performance somehow.

The musical vocabulary of creative effects processing - which is at the heart of computerized

music production - has matured to the point where many distinct sounds can be described and

attributed to certain specific devices or techniques. Therefore, one could suggest that creative

effects processing could be placed at the center of a new instrumental performance, within its

own form factor that can start and stop with a gesture, like any other musical instrument can do.

Rather than increasing the responsibilities of the front-of-house engineer - as has traditionally

been the delegation of post-processing effects - a musician performs the effects processing,

either in an ensemble, or as a solo instrumentalist. However, classifying a collection of effects

processors as a traditional musical instrument is taxonomically problematic.

9

1.3 Fitting into the taxonomy of musical instruments

In ethnomusicology, the Hornbostel-Sachs system describes categories of all musical instruments by

the element that produces acoustic fluctuations. (See Figure 5.) Aerophones, like flutes and

trumpets, require the manipulation of a performer's breath to drive a chamber of wind.

Percussion instruments, which are most often membranophones (like bass or snare drums) or

idiophones (like wood blocks or triangles), require striking, stretching, and/or bending.

Chordophones have strings that must somehow be disturbed, through strumming, plucking,

electromagnetic resonation, bowing, or transduction. (von Hornbostel and Sachs)

Figure 5. Tree visualization of the Hornboste l -Sachs instrument classification system

Essentially, any electric or electronic device used for musical purposes is appended to the

Hornbostel-Sachs system as an electrophone, bound only by the necessity of electricity to operate a

loudspeaker transduction process for sonification. This covers oscillator-based, synthesis-driven

instruments, like synthesizers, the electric organ, and the theremin, where no physical

components are moving in the sonification process. In these instruments, the throttling of an

input current by components and chipsets produces waveforms that are amplified to an output.

Electrophones can also describe playback-driven systems, like samplers, turntables and CD players.

These devices manipulate the playback of a pre-recorded audio signal. (Personal computers can

function in either of these capacities, or also as a hybrid.) Effects processors do not use pre-

10

recorded audio material in the same way that playback systems do, nor do they generate periodic

signals given control input, like synthesizers.

Both synthesizer and playback device-type electrophones have mature interfaces that have allowed users

to expressively manipulate a sonic result in real-time. Be they the vinyl record and the line mixer

of the turntable, the piano keyboard of the synthesizer, or the floating hands of the theremin,

traditionally defined electrophones behave like musical instruments that can be dynamically

actuated. They typically have well-defined interface features, like keyboards or trigger pads.

However, because most effects processors are not designed to be used in a performative, real-

time fashion. Their control sets are designed to be as parametrically explicit as possible, so that

the user can precisely prepare the result of individual moments in time. Effects processors tend

to suffer from what has been described by sound artist Mark Trayle as "the cockpit control

problem": Every single possible parameter is broken out for conditional adjustment as a basic

knob or button (Trayle).

Be they a reverb unit, a delay, a flanger, a phaser, a distortion unit, a looper, or any others,

interaction with effects processors is much more fragmented and static than the manipulation of

a musical instrument, because they have no gestural mechanic of actuation. They augment an

incoming signal that is passively passed to them in a send-and-return fashion, usually by a mixer of

some description. There is no blowing into a mouthpiece; no stroke of an ivory key; no strike of

a drumhead to make them do something. Their input is bypassable in a binary fashion, and their

output is controlled only by controlling the mix of signal being sent to and from them.

1.4 Differentiating from precedent signal processors

As mentioned 1.1 and 1.2, the shortcomings of the "cockpit control"-style interface of the

prototypical signal processor has not stopped their manifestation into many diverse form factors

which have attempted to re-frame them more effectively as such throughout recent history.

What follows is an overview of several notable examples of objects or environments that have

been used to perform effects processing in a live concert context.

11

Figure 6. Signal path of a guitar effects pedal board

Guitar pedal effects boards such as the one depicted in Figure 6 have evolved out of many

guitarists' tendency to use different tones from individual effects pedals at different times

throughout their sets, be that from song to song or even from section to section of a song.

Given the popularity of the guitar, effects pedal boards are a very common example of effects

processing as an augmentative instrument. The pedal board has seamlessly incorporated itself

into the contemporary guitarist's performance technique. Activation and de-activation of

individual processors is binary, performed with the musician's feet. Parametric modification is

awkward, but possible, requiring the performer to come to their knees to turn the tiny knobs of

each pedal. Therefore, more often than not, each processor is simply treated as a tone modifier

on a panel of sonic switches.

The cumulative result of turning different combinations of effects pedals on and off can be used

as an avenue of expression; as an array of static sound templates. But, on the fly re-ordering of the

way that these pedals are connected in serial - which may or may not have dramatic results,

depending on the pedal - is not possible within an uninterrupted performance. This, in addition

to the aforementioned awkwardness of turning knobs on the floor as an avenue of expression.

Signal flow is a permanent line, flowing from the first connected effect to the last. Parallel

connections are possible, but routing becomes even more complicated to physically manage in

this case.

12

Figure 7. KORG KAOSS Pad KP2 (2002)

In the late 1990s, synthesizer company KORG launched a product line called KAOSS that

appears to have been designed to address many of the above-identified issues of the guitar pedal

as a performative effects processor. Originally marketed to DJs, the KAOSS line (such as the

model shown in Figure 7) became popular with many audiences over the first decade of the 21st

century, including gear-happy experimental guitarists like Jonny Greenwood of Radiohead

(McNamee), and performing laptop musicians like breakcore artist The Flashbulb.

A KAOSS Pad is a bank of digital effects mapped two-dimensionally as a finger-driven, guitar

pedal-esque touchscreen. A typical KAOSS model includes sequenced-arpeggiator synthesizers,

buffer-based processors, sweepable filters, and waveshaping distortion effects. Versus the light

switch-style guitar pedal, gestural control is now three-dimensional: activation is managed by an

attack-release envelope around the touch of the screen, and two effect-specific parameters are

mapped to the X- and Y-dimensions of the interface.

These revisions are a significant improvement in the interest of embodied performability. This

form factor has even gained some traction in commercial concert music. Most notably, Matt

13

Bellamy of the progressive alternative rock band Muse uses an electric guitar with the KAOSS-

style design of a two dimensional touchscreen embedded into the body of the guitar to control

various effects processing parameters in his guitar rig.

However, although one KAOSS Pad can swap the kind of effect that it is controlling, the issue of

using one single guitar pedal versus a board of pedals is re-introduced in this context. One could

chain several KAOSS Pads together if they pleased, but, being so-called "digital multi-effects

processors," they are quite expensive. Most of the KAOSS line is quite a bit larger than the

standard guitar pedal footprint. Also, the KAOSS Pad's cryptic three-character display would

obscure which device is responsible for which chosen effect. One could automate changing

which effect is mapped to which pad, but that would require an external solution of some sort.

Figure 8. Two full racks of recording studio rack-mounted effects processors

Rack-mounted studio gear - like the two big racks shown in Figure 8 - offers probably the most

explicit level of parametric control of all the presented examples, but their front-facing design

and per-device interface complexity does not imply a communicative stage performance.

Managing their activation and de-activation is complicated, usually requiring a routing device like

14

a patch bay (with patch cables) or a mixer. In a hypothetical stage situation, an audience faces the

back of a rack, seeing maybe only the connections to a routing hub. The performer themselves is

hard to see, let alone the gestures of their performance.

The mechanic of processor actuation is specific to the device: some have active/bypass switches;

some have wet/dry controls; some, like tape delay units, cannot be cleanly actuated; they must

first output the audio that was last run through the unit. Moreover, most of these units are

meant to be augmentative without being performative. For example, while a lot of music has used the

typically-rack mounted compressor/limiter/expander or the equalizer creatively as part of the

composition, their control sets do not obviously correlate in mapping to a performance gesture.

The use of rack mounted recording studio processing equipment is typically not performed at

the "note level" (Wanderley and Orio) - which can be considered an additional parameter for

classifying a traditional instrument. "Note level" is defined as one of the three strata that

electronic instruments are capable of operating at. Whereas traditional instruments can only

perform at the note level, electronic instruments, for example, can act at the "score level", as

conductors of form, launching new sections of a piece.

Figure 9. A typical Eurorack modular synthesizer setup

15

Modular synthesizers (like the one shown in Figure 9) present the actuation dilemma of rack-

mounted gear in another way. We may see the act of connecting and disconnecting modules, or

the input gestures placed into the system by a peripheral or a step sequencer. However, the

routing responsible for the musical result - and the implication of which devices are involved in

creating that result - is opaque, and often very complicated. The necessary complexity of

building a functional patch becomes the mechanic of performance, binding the performer's

ability to respond to moments: quick changes to the music in energy and motivation, stemming

from the response by the musician him/herself and by the audience.

Modular synthesizer performances tend to be evolutionary in nature; it is not very easy to

completely undo one specific contributing aspect of a moment and modify it in a way that easily

allows for new, different moments quickly. Unless they are being driven by a traditional

keyboard peripheral to serve as a "synth sound", modular synthesizers tend to be featured in sets,

rather than as ensemble members.

Figure 10. Minihost Modular by Image-Line (2014)

Some dynamic solutions have been implemented as software, as well. Modular plug-in hosts -

such as Image-Line's Minihost Modular (Figure 10), and various standalone VST/AU host

applications - objectify plug-in instruments and processors as though they were the modules of a

hardware modular synthesizer. Audio output is patched from each module, and control signals

are routed from one master keyboard and set of controls.

16

Although faster routing flexibility is possible, the issues associated with a communicative

hardware modular synthesis performance are compounded with the issues associated with

working with hidden, virtual devices on the computer, from the audience's perspective.

Furthermore, the workflow paradigm of these kinds of applications will be excessively beholden

to the metaphors of working within the MIDI controller-centric paradigm of the DAW plug-in,

since DAW plug-ins are the objects within this environment. Control messaging of individual

devices is dependent upon a single MIDI keyboard; the input range can be divided, but

ultimately, the environment still functions as a large, single-sound keyboard instrument.

1.5 Summary

In this chapter, it has been identified that effects processing has attained a compositional

importance in popular music. This "promotion" can be pinpointed to the switch to computer-

based audio recording, which greatly accelerated its use in music making. However, as the use of

aggressively computerized effects processing has become an ordinary technique in popular

music production, many of the most important elements of a pop song have their origins in

being a sequenced cue that was not created performatively. Therefore, important pieces of the

music are lost in concert due to their identity being impinged upon a non-instrumental effect

achieved with a computer.

If we were to re-consider the effects processor as a new type of instrument as a means to

possibly resolve this disconnect, there are several parameters that need to be adjusted in order to

make the effects processor more instrument-like. Most effects processors have no dynamic

actuation mechanism critical to performing at the "note level" (Wanderley and Orio). Also, the

definition must be framed to include an environment of a diverse series of effects processors rather than a

single effects processor by itself, given the multi-component and often very involved

combinations of effects processors used to make one post-processing sound.

Most hardware manifestations of this idea refer only to single processors, which have awkward

actuation mechanics, due to their typically non-real-time use. Devices such as KORG's KAOSS

Pad have a very intuitive touchscreen-based actuation mechanic, as well as the ability to represent

17

many different effects on the same field, although not at the same time. However, the idea of an

environment representing the independent control of many different processors simultaneously

still remains.

It becomes apparent that this instrument concept is best suited to existing entirely digitally

within a software environment that is primed with event listeners in order to adapt some kind of

dynamic chain.

The precedent of digital modularity in electronic music synthesis stretches as far back as the

beginning of electronic music synthesis itself. Encapsulated digital functionality was first

manifest in the form of the Unit Generator, conceived by Max Mathews. The Unit Generator

influenced both hardware synthesis and programming language platforms alike.

The next chapter examines the history of ideas following the original inspiration of the Unit

Generator, and how it has manifest in visual programming languages, software plug-ins and

newer platforms since then.

18

19

Chapter 2

History: The Unit Generator

and Software Instruments
"If I've done anything, I am an inventor of new instruments, and almost all the instruments I have invented are

computer programs. [...] So if I am remembered for anything, I would like to be remembered as one of the

inventors of new instruments. I think that this occurred not because I did anything special, but because I was in at

the beginning when computers first became powerful enough to deal with sound and music. I guess I didn't have

any way of predicting the popularity of digital music, and that popularity was the result of many people other than

me making it easy to do and far less expensive. And I certainly had no idea of the rapid advance in computer

power that we have seen in the last 50 years, and I don't think anyone else did either, or at least very few people

[did]. I didn't realize how popular digital music would become, especially for popular music..."

- Max Mathews, March 2009 (Park 22)

Figure 11. Max Mathews with Radio Baton

20

This chapter contains a historical overview of the history of modular functionality in music

software. A richer understanding of how the attempt to create an instrument out of many

smaller modular sub-processes is gained over the course of this explanation.

We begin where nearly every topic begins in computer music - at a man named Max Mathews,

who dedicated his whole life to executing on his vision of "the computer as an instrument."

What we are mainly concerned with is his establishment of the idea of a the Unit Generator - a

macro-sized set of instructions to a computer processor that is of enough utility to be re-usable

in multiple contexts.

After seeing how the Unit Generator gave birth to the idea of the object within the visual

programming environment, we begin to see how projects made of visual objects can themselves

ultimately be encapsulated as a complete definition of an instrument. This new level of

objectivity naturally cross-pollinated with the workflow of the DAW to culminate into the DAW

plug-in. We see how the plug-in then in turn influenced the external control structure of the

modular audio software object.

We then observe the way that the change that using plug-ins in music production began to

change the interfaces that were being used to make music. The quest for re-embodied computer

music resulted in the creation of an entirely new academic conference. We can then reflect on

the complexity of modern popular electronic music production equipment setups, and the way

in which a break from the "custom template of mapped controls onto a generic device" can

begin to break away the complexity of digital modularity in music. By encapsulating many of

these mechanisms so that they are hidden from the user, we can begin to focus on practicing the

instrument, rather than figuring out how to build it each and every time.

2.1 Max Mathews, Music -N , and cross-platform functionality

Max Vernon Mathews is commonly described as "the father of computer music." (Chowning)

Though computer music encompasses a tremendously diverse array of research interests, the

luminary Mathews began and then continually contributed to many facets of it for over fifty

years. Max was among the first to digitally render audio waveforms and then acoustically

21

transduce them in 1957 (Di Nunzio). His trailblazing of the computer as an instrument via his

Radio Baton in the 1970s (pictured in Figure 11) defined the beginnings of a parametric controller

model for digital music performance interfaces (Boulanger et al.). His work on phasor filters

(Park) and scanned synthesis (Verplank, Mathews, and Shaw) in the 1990s and 2000s showed a

man driven by overall passion and vision far into his twilight years. The groundwork laid by Max

Mathews in so many fields of digital music synthesis is fundamental to the work of so many.

The family of audio programming languages that descend from Mathews' original language

MUSIC, which are commonly referred to as Music-N, are crucially organized around the idea of

the unit generator, introduced in MUSIC III from 1960 (Roads and Mathews 6). Originating before

the use of cross-platform language compilation via platforms like FORTRAN (Roads and

Mathews 7) and C, the unit generators of MUSIC III - within this domain of digital audio synthesis

- predates modern forms of object-oriented programming that frame similar relationships

between prototyped data structures1.

Figure 12. Excerpt of "Trapped in Convert" by R. Boulanger, written for Music 11 (1979)

1 For more information on the evolution of Music-N's lineage, please see
http://www.musicainformatica.org/topics/music-n.php as reference.

22

These macro blocks of pre-compiled functionality, interfacing in a graphable data flow

relationship, even influenced the component-driven analog hardware modular synthesis systems

of Moog (Park 20), Buchla and Serge.

The definition of an abstract "instrument" in an "orchestra" which is further comprised of

abstracted unit generators variously comprised of line segments executed over time, oscillators,

lookup tables, and amplifiers carries through to modern iterations of Music-N, as in Csound,

pictured in Figure 12. The featured piece was written in 1979 for Music-N's last platform specific

manifestation, Music 11 for the PDP-11. It can still run as intended on a 2014 computer, thanks

to the revolutionary ideas of Mathews' cross-platform support.

Before Mathews' pioneering work in cross-platform audio synthesis environments, many routine

building blocks of doing audio development work - such as the use of a basic sine wave

oscillator, or the use of an amplifier which sums signals - would have to be implemented at the

lowest level above binary, in that computer's processor's specific assembly language. This means

that there can be no shortcuts in prototyping any system; every time the basic building blocks of

modular synthesis are required, it must be defined for that processor's architecture.

The breakthrough of Music IV was in making the MUSIC environment cross-platform through

the FORTRAN language (Roads and Mathews). This set an important precedent for all synthesis

languages following it, though the common base language is now C, or an extension such as

C++ or Objective-C. Cross platform construction platforms now describe almost every

construction platform, so that units can be shared between machines and programmers working

on an idea, the implementation of which will be interpreted by the new machine.

Constructing an audio engine on a computer platform that enjoys widespread cross platform

support is key for constructing an instrument that can run outside of specialized hardware

profiles. The environment must deal in modules that are "high-level" enough to achieve robust

advancements towards an instrument's intended functionality, but "low-level" enough that they

are general enough to design a power and flexible system with.

23

Figure 13. Typical Max patches

2.2 Patches in visual programming

Mathews' work on audio synthesis languages was highly shaped around his application context:

as a trained violinist, he hoped the computer would be able to mutually recite a composition

with him, serving as accompaniment and improvisation partner. Thus, the execution logic of a

Music-N program struggles in the realtime domain by its use of orchestra and score terminology to

describe runtime durations. Miller Puckette, who studied with Mathews in the 1970s and 1980s,

made a crucial adaptation in removing this terminology in order to focus on real-time event

listening. In the process of adaptation, Puckette made the crucial step of transforming the

workflow of the unit generator into the mouse-driven visual programming domain.

In a process that took over a decade, Puckette reframed his own iteration of the Music-N

environment called Music500, paired with a GUI2 called M (Puckette, Interprocess Communication

and Timing in Real-Time Computer Music Performance). Music500 was developed to incorporate into

Music-N Mathews' RTSKED framework, which handled multiple asynchronous control data

schemes simultaneously into a realtime performance and synthesis context (Mathews).

Consequently, Puckette's development efforts restructured Music N's operative terminology away

from the through-composed ideals of orchestra and score and objectified these control data

messages.

2 Graphical user interface.

24

Supplanted by the industry revolution of MIDI3 and bolstered by the commoditization of the

personal computer, M would eventually morph into a window-based data type called a Patcher

(Puckette, “The Patcher”). The Patcher grew to engulf the design of Puckette's environment,

becoming the core of the computer program Max by the mid-1980s. By the 1990s, the audio

DSP-powered Max/MSP and its open source variant Pure Data began a lineage of "patch"-driven

programming languages by themselves (Puckette, “Max at Seventeen” 33). Patches tend to look

very complicated, as seen in Figure 13.

The framing of the unit generator into a chart of literally connected objects forming event-driven

signal flow in the versions of Max of the early 1980s presents one of the earliest so-called visual

programming environments. Visual programming environments are essentially the byproduct of the

mouse-driven, window-based personal computer operating system from Xerox PARC etc. from

the late 1970s to the mid 1980s (Nickerson).

The capacity for abstraction, encapsulation and duplication presented by this workflow adds a

facet to software-based, digital modular synthesis that distinguishes it from hardware-based

signal processing techniques. This primarily mouse-driven programming technique has a tradeoff

in lateral bloat of programming inefficiencies, but it tremendously simplifies the overhead of

getting a sophisticated data model/controller program running as a functional prototype

(Puckette, “Max at Seventeen” 35–37).

2.2.1 The Max patch, lingua franca of computer music

After nearly thirty years of the continued popularity of the Max workflow within the computer

music community, the Max patch is considered by some to be the "lingua franca" of the culture

(Puckette, “Max at Seventeen”).

Thanks to features like Max Runtime and Presentation Mode, Max has grown from the domain of

rig-specific peripheral-driven multimedia installations and concert performances. It has been

used as an intercalary development platform for prototypes of proprietary standalone software,

such as Ableton's DAW Live4 and some of its audio processing plug-ins5. It has shipped with

3 Musical instrument digital interface.
4 http://www.musicradar.com/us/tuition/tech/a-brief-history-of-ableton-live-357837

25

mainstream hardware products as a firmware re-flasher and a controller re-mapping

environment6. With some extra preparations, Max patches can even be sold as standalone

applications through Apple's Mac App Store7.

From the development of new, asynchronous communication protocols such as OSC (Open

Sound Control) (Wessel and Wright), to the core mechanics of music software UX8, to the

concept of interdependent audio software modularity itself, Max and its ilk have had a profound

influence on the modern music technology software landscape.

2.3 Software plug-ins

Thanks to the unfolding benefits of Moore's Law (Moore 114–117) and innovations such as the

USB9 standard of 1997, personal computer-based digital audio recording and editing began to

enter the mainstream around the late 1990s to the early 2000s. Offered at a completely different

price point with new use cases, music production equipment became just as much of a

commodity as the personal computer had in the previous decade.

At this point in time, the commercial music production industry had a big incentive to develop

modularized signal processing functionality, because such products have almost no distribution

overhead or manufacturing cost.

Figure 14. The Evolution 461C , what most controllers looked like before Ableton Live

5 http://www.kvraudio.com/interviews/gerhard-behles---pushing-ableton-into-new-territory-21702
6 http://www.keithmcmillen.com/softstep/software
7 http://www.cycling74.com/2012/04/19/get-your-max-standalone-on-apple%E2%80%99s-mac-app-store
8 User experience.
9 Universal Serial Bus.

26

The widespread adoption of Steinberg's SDK (Software Development Kit) for the VST 2.4

standard10 had an important role in creating the culture of the bedroom producer (Gunderson),

which created entire new industries revolving around the MIDI controller and the software plug-in

for DAWs. MIDI controllers began to change their form, in order to better represent the

software they were controlling: the decades-held representation of the piano keyboard offered by

companies like Midiman, Edirol and Evolution (Figure 14) began to shift toward non-

representative grid controllers inspired by the Akai MPC line, such as the Monome (Figure 15), the

Novation Launchpad, the Akai APC40 and the Ableton Push.

Figure 15. The Monome (2006) - the influential minimalist software controller

2.3.1 Reaktor

One of the most popular and enduring examples hybridizing the software embodiment of

hardware analog modular synthesis and a Max-esque visual programming environment for

managing control data in an event-driven fashion is a program called Reaktor11 by Native

Instruments.

Launched as Generator in 1996 by Stephan Schmitt12, Reaktor originally shipped with its own

hardware sound card for DSP calculations13. This software pre-dated the conception of the

10 http://www.steinberg.net/en/company/developer.html
11 http://www.native-instruments.com/en/products/komplete/synths-samplers/reaktor-5
12 http://www.kvraudio.com/interview_with_native_instruments.php

27

cross-platform plug-in software instrument introduced a year later by Steinberg with their VST

standard14. Native Instruments quickly conformed Reaktor to the nascent plug-in standard.

By having the ability to run Reaktor as a software plug-in within a DAW host, this environment

functionally links an old conception of software digital audio synthesis to the emergence of a

new one, based around single-channel closed systems that are constructed of black box

processes arranged in a linear fashion.

Native Instruments have even embraced their own form of using their software as a

development platform, much in the same way many develop software sold to end-users entirely

within Max/MSP. Native Instruments products such as Spark15, Razor16, and Prism17 are built on

top of Reaktor, exemplifying how an open system can create new closed-system form factors

again.

By hybridizing the hardware modular synthesizer, the software visual programming

environment, and the DAW plug-in together as one software product, Reaktor occupies a unique

niche in the software development platform market. Able to piggyback onto the transport

controls of a host environment, able to open up on multiple operating systems, and with the

ability for Reaktor projects to be encapsulated as standalone devices, Reaktor offers an exciting

sandbox for development.

13 http://www.soundonsound.com/sos/sep98/articles/generator.html
14 http://www.musicradar.com/us/news/tech/a-brief-history-of-computer-music-177299
15 http://www.native-instruments.com/en/products/komplete/synths-samplers/reaktor-spark
16 http://www.native-instruments.com/en/products/komplete/synths-samplers/razor
17 http://www.native-instruments.com/en/products/komplete/synths-samplers/reaktor-prism

28

2.4 Diverse, dynamic interfaces for virtual instruments

The development of new software instruments in this new patch-driven climate is not beholden

to any standardized control scheme that could be modeled off of the typical keyboard

instrument. This has caused the hardware interfaces that control these instruments to evolve just

as quickly as the development of new software instruments has. Substantial efforts have been

made throughout the past twenty years both in the academic and commercial realms, at times

cross-pollinating.

2.4.1 Academic computer music conferences

The desire to re-embody the mechanics of virtualized synthesis is an obvious byproduct of the

software environment. This is a topic that has been approached not only in the commercial

product sphere, but also within the academic world. The ability to re-distribute encapsulated

synthesis environments as a single computer file gave a much greater sense of ontology to

software instruments. Artists shared Csound orchestras and scores, Max patches and Reaktor Ensembles

with each other. Therefore, how can digital music artists fabricate interfaces that allow gestures

to have throughput into an environment that would allow them to be expressive?

One such academic conference that has attacked this question head-on is New Interfaces of

Musical Expression, or NIME. Launching in 2001, the NIME conference invites papers from

fields as diverse as computer vision (CV), human-computer interaction (HCI), machine learning

and artificial intelligence, fabrication, and mechanical engineering. NIME authors continually

publish works such as the calibrated response of certain sensors (Freed), description of an artist's

visual programming environment that they use in their performance practice (Kleinsasser), and

philosophical papers about the nature of physical - yet virtual - musical instruments (Cook).

NIME's body adds to conferences such as the International Computer Music Conference

(launched in the 1970s) and the Sound and Music Computing Conference (launched in the

2000s), which often provide a prophetic glance into new movements in controller design - such

as work on mobile phones (Gaye et al.) and the Wacom tablet (Zbyszynski et al.) that pre-date

the smartphone revolution.

29

2.4.1.1 Digital luthier i e : the reacTable

A device called reacTable (Jorda et al.; Kaltenbrunner et al.; Jordà et al.) has managed to

successfully cross domains from the academic realm to the popular recognition of the

mainstream. reacTable creator Sergi Jordá cherry-picked ideas from HCI, computer vision,

embedded systems, modular synthesis, visual programming, and the very nascent beginnings of

gestural multi-touch vocabulary. reacTable, which is pictured in Figure 16, robustly espoused an

unprecedented new form factor which pre-dated the popularity of mainstream touchscreen

music applications found on iOS and Android.

Jordá coined the term "digital lutherie" to refer to the responsibility Digital Musical Instrument

(DMI) designers have to re-embody the software environments they create into formats that can

be injected with observable expression, akin to the way a luthier carves a guitar to refine its tone

and character. (Jorda)

reacTable even saw on-stage use by many popular music artists, such as singer Björk, and

alternative rock band Coldplay. Given that both of these artists make heavy use of offline

electronic music production techniques in the studio and feature prominent synthesizer work in

their music, both prominently featured reacTable in their sets as a means to bring appreciation

and performance back into this aspect of their music, outside of the traditional keyboard

instrument interface.

Figure 16. reacTable , mid-performance

30

Incorporating sample playback, DAW-inspired global controls for tuning, and a radius and

proximity-based metaphor for output structure and signal flow, the reacTable spawned many new

applications (Jordà and Alonso; Roma and Xambó) and iterative variations in the academic scene

(Hochenbaum and Vallis; Partridge, Irani, and Fitzell; Crevoisier et al.) after its arrival for the

remaining decade, and laid the foundation for many forthcoming iOS synthesizers.

2.4.2 The commercial product sphere

As plug-in instruments slowly managed to become the predominant source of content in the

contemporary electronic music studio by the mid-2000s, MIDI controller manufacturers began

to develop devices that were nothing more than blank-canvas packages of knobs and faders,

such as the one in Figure 17, expressly for custom mappings that likely involved several software

devices, often mapped across several pages.

Figure 17. KORG's first edition NanoKONTROL (2008)

The burgeoning industry and culture surrounding these ideals became known as "Controllerism"

(Attias and van Veen). Entire companies such as Keith McMillen18 began selling products that

spawned a cottage industry of selling mapping templates meant to optimize a user's workflow19

when using a controller to drive a DAW.

Figure 18. The controller sprawl of Tim Exile's live setup (2009)

18 http://www.keithmcmillen.com/products
19 https://www.youtube.com/watch?v=8TO3z8LtP5U

31

2.4.2.1 Inter face polymorphism: the Lemur Input Device and i t s descendents

After a certain point of creating custom mapping templates for device-specific workflows

around highly non-standardized software instruments, the use of a physical controller begins to

fall apart in practicality. This is exemplified in Figure 18. It is apparent that at a certain point, it

may perhaps be more useful to represent software instrument interfaces dynamically via a library

of interface widgets that can adapt to the user's specific setup, via a touchscreen.

The Lemur Input Device by JazzMutant (seen in Figure 19) became a very early champion of the

touchscreen controller, sporting a high-resolution display and floating-point control precision.

Using desktop computer software, the user designs their own layouts with a widget toolkit that

they could then upload to the unit. A rare out-of-the-box supporter of Open Sound Control

(Wessel and Wright), the Lemur was publicly used on-stage by many popular artists such as Nine

Inch Nails, Björk, Daft Punk, Richard Devine, The Glitch Mob, Ritchie Hawtin, Justice, and

Ryuichi Sakamoto20.

Figure 19. The original Lemur Input Device by JazzMutant (2002)

20 http://www.jazzmutant.com/artists_lemurized.php

32

As live performances increasingly began to comprise of the realtime manipulation of software

instruments, being beholden to physical controls could sometimes become unwieldy. This is why

JazzMutant championed Lemur's optimized connectivity with custom instrument platforms such

as Reaktor and Max/MSP. Despite a lack of haptic feedback, user-designable digital touchscreen

interfaces fared well as a practical counterpart to extremely diverse user-designed software-only

musical instrument rigs.

In the Lemur environment, the interface designer has access to global variables, conditional

scripting, OSC input and output, container objects, and procedural, iterative commands. This

capacity for scripting distinguishes it as a highly capable platform for representing system-wide

interface changes like those necessary for interfacing with fully functional software on the laptop

it is communicating with. One could effectively create the interface for the complex modular

software-based ecosystem, without the performer ever having to reference the host computer.

2.5 Smartphones, tablets and the app

The Lemur was just barely ahead of its time. We have observed the ways in which hardware

interfaces themselves have become more software-oriented, customizable and virtualized, in

order to meet the evolving input requirements of software instruments. However, the arrival of a

completely new type of computer as the 2000s shifted to the 2010s consolidated many standing

efforts into a new form factor.

The 2007 iPhone and its operating system ushered in a standardization of the touchscreen

device as a haptic, multitouch, finger-operated personal pocket computer. Though this

effectively put companies like JazzMutant out of business21, the Lemur concept endured through

this new era, through porting and adaptation. The popularity of programs like Hexler's

TouchOSC (seen in Figure 20). Eventually, the original JazzMutant Lemur environment would be

sold to a new company called Liine, who ported it to iOS for use with iPhones and iPads.

21 http://www.jazzmutant.com/press_release.php

33

Figure 20. TouchOSC , running on iPad and iPhone

This model of using the touchscreen as a remote control is largely a holdover from the previous

era of controllerism, however. Most of these instrument apps (including some of the ones in

Figure 21) host the audio engine and the control interface as one self-contained program. Apps

such as Audulus22 and Jasuto23 have adopted a post-reacTable (Kaltenbrunner, Geiger, and Jordà),

proximity trigger-based, subtractive synthesis ethos; kind of a fiducially-driven Moog.

Figure 21. Lots and lots of performative iPad apps

Kevin Schlei's app TC-11 (Schlei) is a unique merger of interface and localized synthesis. Schlei's

program makes comprehensive use of the sensors of a tablet device - such as accelerometer and

22 http://www.audulus.com
23 http://www.jasuto.com/main

34

gyroscope - to a much greater extent, and is powered by a more traditional subtractive synthesis

engine, somewhat akin in interface design and system architecture to Native Instruments'

Absynth24. The gestural scalability of Chris Carlson's app Borderlands Granular (Carlson and Wang)

is an artful example of the painterly interface (Levin). The general sense of performative

composition through exploration was feels transcendent in the experience Carlson creates.

What's more, programs such as AudioBus25 have managed to yet again re-encapsulate the runtime

environment of the audio app so that it can be routed in an modular fashion through a dynamic

serial interface. This is an example of the constantly shifting scope of modularity in electronic

music devices; closed-operation platforms will be constructed from modular development

sandboxes, only to be broken out again for cross-module interaction as a result of musician's

workflows.

Interface-driven performative buffers are an extremely potent area of instrument design that

encourages further manifestations. Through the iOS granular sampler applications of recent

years - such as Samplr26, Yellofier27, Curtis28, MegaCurtis29, Singing Fingers (Rosenbaum and Silver)

and VOCO30 - back to The Hands interface of Michel Waisvisz (Waisvisz), live buffer-based

performances can take many rich forms beyond just common live looping techniques. This

feature alone can lead to satisfying concert presentations.

24 http://www.native-instruments.com/en/products/komplete/synths-samplers/absynth-5
25 http://www.audiob.us
26 http://www.samplr.net
27 http://www.yellofier.com
28 http://www.thestrangeagency.com/ipad/#app-curtis
29 http://www.thestrangeagency.com/iphone/#app-megacurtis
30 http://www.jonathanmackenzie.net/apps/apps.html

35

Figure 22. Lots and lots of multi-effect processor plug-ins

2.6 Dynamic multi-effect plug-in processors

The sea change of instrument virtualization has dramatically fragmented the look and feel of

both digital instruments and the hardware that controls them. The multi-effects processor as a

realtime performative plug-in instrument (as shown in Figure 22) seemed to be in the air as the

2000s changed to the 2010s, as hardware interfaces become as modular as the fragmented

software ecosystems they are controlling. However, the strategy of implementing this complex

idea as an automatable processor interface is subject to a wide variance in implementation.

Some plug-ins, like iZotope's Stutter Edit and Native Instruments' The Finger, allow the user to

actuate cued sequences via mapped MIDI keyboard key presses. Others, like Sugar Bytes'

Turnado, can execute looping phrases of effects processor automations that are activated varying

amount by the twisting of eight consecutive knobs. Some, like The Finger31, salamanderanagram's

31 http://www.native-instruments.com/en/products/komplete/effects/the-finger

36

Optimus Prime32, will dynamically add and remove elements in the order they are introduced, while

others only have pre-defined serial paths with many objects available in the path.

Real-time signal processing environments such as these are novel to the new decade. However,

none of these realizations seem to transcend the appearance of a performer behind a laptop

manipulating a MIDI controller. Furthermore, their reliance upon cued automation structures

give to the audience more of an impression of a conductor instructing a system, rather than a

performer improvising an unmeditated gesture.

MeldaProduction's MRhythmizer33 and Image-Line's Gross Beat34 are direct competitors of the one-

bar breakpoint automation multi-effect sequencer variety. Sugar Bytes' Effectrix and Sinevibes'

Sequential35 are similar in their one bar, 16th note step sequence serial multi-effect activation and

de-activation mechanics. Image-Line's Effector36 is like an exact software version of the KORG

KAOSS Pad. Native Instruments' Molekular37 - which is Reaktor-based, as Tim Exile's efforts

such as The Finger and its precedents Keymasher and Vectory are - retains a four-slot ceiling, while

letting you dictate between several routing options and allowing you to perform it with radius

and angle-based knob controls. Twisted Tools' Buffeater38 is another Reaktor-based performative

multi-effects sequencing plug-in.

2.7 Summary

In Chapter 1, the growing utilization of effects processors in contemporary music was discussed,

with virtualization through computerization being pinpointed as its leading accelerator. In

Chapter 2, it is recognized that encapsulated, modular functionality has always been the most

important design principle in computer music systems. Therefore, the digital software platform

is perhaps a good place to consider thinking about an ecosystem of smaller objects as a musical

instrument.

32 http://salamanderanagram.wordpress.com/2012/02/22/optimus-prime
33 http://www.meldaproduction.com/plugins/product.php?id=MRhythmizer
34 http://www.image-line.com/plugins/Effects/Gross+Beat
35 http://www.sinevibes.com/sequential
36 http://www.image-line.com/plugins/Effects/Effector
37 http://www.native-instruments.com/en/products/komplete/effects/molekular
38 http://twistedtools.com/shop/reaktor/buffeater

37

The scope by which functionality becomes abstracted into a new modular sub-unit to be

combined into an even larger environment has constantly been re-framed in software. The

functional Unit Generator has gotten larger and more complex in definition, as computers are able

to handle increasingly more intense operational blocks in tandem.

"Modularity" once referred to the opcodes of Music-N in the 1960s, where the ability to reference

the same floating-point line segment executing over time was considered a re-usable unit. Then,

"modularity" came to mean an entire project of functional blobs in the 1980s, where artists

shared, re-combined and modified patches that were abstractions of the relationships between

unit generators. Patches made of complex relationships between lower-level Unit Generators

became a new kind of Unit Generator.

The culture of patches was transitional to the rise of plug-ins of the 1990s, when the commercial

music production industry got involved. Commercial music production companies got involved

once personal computers - not just major workstations - were powerful enough to host virtual

instruments. Internal calculations are hidden from the user, who is presented with an often-

skeumorphic graphic interface that is meant to represent an entire digital instrument or effects

processor that has equal exchange to a piece of hardware. These plug-ins are compounded

together in usage inside of the DAW. There, the new sandbox is the channel insert, using entire

instruments made of abstracted blueprints of Unit Generator connections, which themselves are

made of cross-platform, lower level Unit Generators.

Reaktor is a perfect representation of this mixed-scope sandbox, where a user can create a

complete performance system - referred to in Native Instruments' terminology as an Ensemble -

that presents entire virtual drum machines and sequencers alongside logic-level math operators;

multimodal filters with complete interfaces live along side procedural iterators.

Reaktor and Lemur, when presented together as a new closed-unit solution, provide an

opportunity to wrap the DAW functionality, digital modularity, and macro-level object

manipulation into a computer-side software platform that could adequately model a dynamically

38

re-routable effects processing chain, while being represented on the instrument as a context-

sensitive, dynamically adjusting set of controls on a screen-based interface.

2.8 Introducing Touchpoint

With the release of products like iZotope's Stutter Edit and Native Instruments' The Finger, we see

an industry that is headed toward the idea of a performative multi-effects processor. Plug-ins like

these are meant to be considered on their own terms as an object responsible for effects

processing that is featured prominently in real-time use. However, their connection to

necessarily running from within a DAW - and their need to connected to a MIDI controller,

inheriting all of their operation logic from note events - seems convoluted. It short-changes the

opportunity for this concept to embody its own form factor, rather than confusing audience

members further by assigning any miscellaneous post-processing task to a keyboardist.

It is from this starting point - the desire to somehow iterate on The Finger and Stutter Edit - that I

began to concieve of Touchpoint, which attempts to unify the plug-in style of multi-effects

processor with the painterly interfaces of mobile device-based synthesizer apps.

39

Chapter 3

Touchpoint

Figure 23. Touchpoint idea web

Touchpoint is an instrument that was created to embody the act of assembling complex chains of

signal processors on-the-fly, and manipulating their parameters gesturally. One "note" is

correlated with the activation of a signal processor, which the performer can manipulate

parametrically as though they were using vibrato on a string - in two dimensions. It weaves

together ideas from many emergent fields of thinking about computer music, seen in Figure 23.

The control interface of the instrument is a multi-touch tablet; specifically an Apple iPad. This

interface wirelessly drives an audio engine built in Reaktor. The main performance "pages"

40

essentially work like a chain of KORG KAOSS Pads that will dynamically apply an effects

processor within the environment in the order pressed. By making the synthesis engine remote

from the control interface, laptops can be removed from the stage altogether. By formatting

communication wirelessly, Touchpoint can be used in single or multiplayer fashion. It is flexible to

either scenario, or mixed configurations.

Whereas Chapters 1 and 2 attempted to set a stage for why Touchpoint was created, Chapter 3

explains the what and how behind its' construction. The structure of this chapter is such that four

facets of the instrument are emphasized: the synthesis technique, the interface layout, and the

networking technology. Each chapter will explain which platform was used to achieve this end

and why.

3.1 Introduction

When work on Touchpoint began, its feature list was not specified to be anything outside of a

DAW plug-in. Based on this perspective, comparisons between several similar plug-ins were

made. In October of 2012, this feature comparison chart was rendered, to make sure Touchpoint's

feature set did not sufficiently match any of their profiles.

Table 1. Feature Comparison Chart of Similar Audio Plug-Ins, October 2012

 The Finger Stutter Edit Turnado39 Effectrix40 Beat Repeat41 SupaTrigga42 BBCut/LiveCut43
Active/Passive? ACTIVE ACTIVE ACTIVE TOGGLEABLE TOGGLEABLE PASSIVE PASSIVE
Phrase locked? YES YES NO TOGGLEABLE NO YES YES

Probability-based? NO NO NO NO TOGGLEABLE YES YES
Sequenced? NO NO NO YES NO NO NO
Enveloped? YES NO YES NO NO NO NO

MIDI-controlled? YES YES YES TOGGLEABLE YES NO NO
Serial FIFO? YES NO YES YES NO NO NO
Polyphony SIX ONE EIGHT FOURTEEN ONE ONE ONE

39 http://www.sugar-bytes.com/content/products/Turnado/index.php?lang=en
40 http://www.sugar-bytes.com/content/products/Effectrix/index.php?lang=en
41 https://www.ableton.com/en/blog/guide-beat-repeat-quantize-courses
42 http://bram.smartelectronix.com/plugins.php?id=6
43 http://mdsp.smartelectronix.com/livecut

41

Touchpoint was created to satisfy a unique feature template, as per the characteristics listed in

Table 1. Characteristics irrelevant to designing a DAW plug-in notwithstanding, this implies:

• Toggleable activation status; each processor can activate an input envelope or not

• Not phrase locked; effects last as long as the release envelope of the final remaining

"note" is registered

• Not probability based; each effect is dependent upon the user's activation

• Not sequenced; axes are somewhat quantized, but effect duration and introduction does

not resemble a duration setting or a step sequencer of some sort

• Enveloped per effect, tied to held-down notes/latched effects

• Not MIDI controlled, using a comprehensive, streamlined OSC specification

• Abiding by a serial FIFO ("first in, first out") stack algorithm for effects

• Hypothetically infinite polyphony. In practice, this was scaled down to nine "voices"

Touchpoint is an iPad-based performative modular effects processor instrument that focuses on

dynamically recombined manipulation of non-linear effects processes as its core synthesis

method. The functionally segmented paradigm of modular synthesis (depicted in Figure 24) is

replaced with a more simplified, holistic set of objects that respond very differently, depending on

how the objects are arranged, and the way in which their internal settings are scaled. This is

accomplished by creating a new platform based equally in touchscreen modular synthesizer apps

and DAW plug-ins. Touchpoint presents a new kind of approach to both touchscreen modular

synthesizer apps and synthesis technique.

Figure 24. The audio , contro l , log i c paradigm of modular synthesis

42

3.2 The synthesis technique

There are two core principles that influenced the design of Touchpoint in such a way that makes it

novel among performative signal processors. The first principle effectively justifies effects

processing as a mode of music synthesis, and it refers to the use of exclusively non-linear

systems in the choice of available processors in the instrument.

3.2.1 Synthesis via non-linear processor combination

In DSP, a Linear System refers to any process that exhibits both static linearity and sinusoidal fidelity.

If either of these properties is invalid, then a process cannot be described as a Linear System. Static

linearity refers to the idea that a process can simply be described as the input offset by a certain

constant; i.e. a single-process transposition can be observed in a plot of the incoming signal vs.

an outgoing one. Sinusoidal fidelity refers to the idea that if the incoming input to a process is a

sine wave of a certain frequency, that it will maintain integrity through the process and return the

same sine wave at output.

These parameters can be additionally described by their homogeneity (the observable effect of a

linear transfer from input to output) and their additivity. Additivity refers to the idea that a multi-

stage process can still render individually distinguishable input signals. For example, hearing two

voices speaking simultaneously does not sound like a compound new person, but rather the

reception of two simultaneous, separate voices. (Smith)

For an example of a Linear System versus a Non-Linear System, think of a simple gain adjustment

versus an amplitude modulator running at ring modulation speeds. In each case, a signal's

amplitude is modified. However, a gain adjustment is just a simple offset in magnitude. Its

output result can be described as a transformation of the input result that is invariant over time.

Gain adjustment can be described as a Linear System.

On the other hand, amplitude modulation describes a gain adjustment that is driven by a

modulating oscillator. When modulated at the audio rate, a bipolar input sine wave produces a

pair of output sine waves that have a relationship that is dependent upon the spectral content of

the incoming signal, as well as the amplitude and frequency of the modulating oscillator.

43

One could run several signals through a ring modulator processor and see different output

results without an obvious clue as to their relationship in the absence of the input variables.

Especially when considering the effect of aliasing above 22KHz and below 20Hz at a typical

sample rate, a ring modulator does not exhibit signal-agnostic invariance, and can therefore be

defined as a Non-Linear System.

This is important because Non-Linear Systems produce completely different outcomes depending

on the order they are arranged in. The observable additivity of Linear Systems means that the order

of applied processes is irrelevant; each stage can still be perceived in the sum output result. Each

Non-Linear System will produce a different output result, depending on the upstream

transformations that have been performed upon it.

This property of Non-Linear Systems describes most effects processing units, and can therefore be

used as a useful metric for deciding which effects processors to use in the design of Touchpoint.

Playing around with the ordering of modules gives the performance framework much deeper

mechanic of exploration than if ordering did not significantly matter.

Figure 25. Comparison of order in Non-Linear Systems

The principle of dynamic non-linear re-combination is demonstrated in Figure 25. In the test

audio from which this spectrograph was rendered in iZotope RX3, each configuration is played

44

for four seconds, lasting twelve seconds total. At left, the input audio signal is first played by

itself; a sine wave at 440Hz. In the following images, each of the effects processors had the same

frequency and wet/dry strength to its respective modulation oscillator.

In the center figure, an Amplitude Modulator is placed before a Frequency Modulator. In this

scenario, the fundamental pitch appears to have been tuned a chromatic half-step up, with the

appearance of at least two perfect octaves somewhere below it, and a lot of typical clangorous

Bessel Function FM activity in the midrange. In the figure at right, the same Frequency Modulator is

placed after the Amplitude Modulator. The resulting sound has a dominant fundamental a whole

step above the original pitch, with many overlaid pure tones above it that make it sound like a

two-tone DTMF dial tone-type sound. As can be inferred from the Figure, many more pure

frequencies are generated in this configuration than with the previous configuration.

If these processors had linear effects, their order would not matter; both cases should produce

the same spectrum. However, each of these processors subtract and insert their own spectral

content and amplitude envelope modifications, which are dependent upon the signal being fed

to them, thus creating a dynamic output result that is dependent upon order.

3.2.2 The "perceptual modulation spectrum"

Figure 26. The electromagnetic spectrum

45

I like to call the principle which Touchpoint's choice of available objects something like "the

perceptual modulation spectrum", because it indicates the idea's relationship to the

electromagnetic spectrum (Figure 26). Radio waves, compared to visible light and gamma rays,

are typically thought of as separate phenomena, each with their own physical properties, uses,

perceptual effects, and technology built to interact with them. In fact, they are all

electromagnetic radiation of wavelengths separated by orders of magnitude.

Figure 27. The Karplus-Strong plucked string algorithm

In a very simplified manner, this same unification can be presented to many of the different

audio processing outcomes that are typically circumscribed as separate processes. For example,

iterative, decayed repetitions in time of an input signal could describe a localization effect (Haas),

an echo, a delay, or a resonating string (Karplus and Strong) (see Figure 27). They are merely

separated by orders of magnitude with regards to the number of repetitions, their decay

coefficient, and the amount of time that passes between them. This time could be represented in

the digital domain as samples per second, given a sample rate.

This idea was inspired by the way BT and iZotope presented the choice of repetition sizes

available for buffer size traversal in their product Stutter Edit. In the Stutter Edit GUI, all buffer

size-based modifiers are reading from a table of selections listed at the top of the plug-in. This

table is represented as a table of two halves, comprising rhythmic values at tempo and chromatic

frequencies extending four octaves. Thus, beat repeat-type effects, glitch edit-type effects, granular

synthesis (Roads) and PCM44/wavetable synthesis are all unified into one buffer-based object.

44 Pulse code modulation.

46

To my knowledge, this is the first commercial product to represent rhythmic values and

chromatic frequencies as one continuous spectrum. This representation (shown in Figure 28)

sparked the line of thinking implemented in Touchpoint, where it has been nearly copied, with

greater precision.

Figure 28. The upper portion of iZotope Stutter Edit's GUI

After studying its behavior closely, it was observed that, in Stutter Edit, depending on what the

master tempo is set to, when sweeping upwards or downwards across the selected options, the

table of four octaves of chromatic notes and the table of normal, dotted, and triplet rhythmic

values begin to interweave with each other at different points. This makes sense; despite their

graphical separation, these two tables interweave dynamically because one of them (rhythmic

values) changes its values in samples per second at sample rate depending on a master tempo

constant, and the other (chromatic frequencies) is just a static lookup table of buffer sizes.

After a certain minimum buffer size near the ~20-60Hz beginning of the audible frequency

spectrum, the exact point of which depends on the input material used, looping buffers

perceptually lose whatever their original pitched root note was, increasingly being dominated by

an octave transposition of whatever the nearest root note of the chromatic frequency at that

buffer size is. Increasing or decreasing the buffer size tends to simultaneously tune the pitch as

well as modify the periodic sound's timbre. A looping buffer becomes a wavetable synth.

In Stutter Edit, there are a total of 74 buffer size options available to the user, which stretch from

a dotted half note at tempo (three quarters of a musical bar) to MIDI notes C2 through B5.

There are practical considerations for this clipped range of notes - MIDI note B1 is the closest

number to 60Hz, which is barely audible as a pitch for looping buffers of audio material under

most conditions. Likewise, note B5 is near 2KHz - most likely, input material with a

fundamental frequency above this range is an error; it is unlikely. Also, beginning at ~60Hz is a

sensible crossover point from the tiniest unit available in the rhythmic indices table: the triplet

1024th note. Nearly regardless of the master tempo set, the relationship between these tables

displays a crossing over roughly halfway across the total run of selected indices.

47

3.2.2.1 Implementat ion in Touchpoint

In Touchpoint, there are 161 indices available, because on the rhythmic unit list of the two tables, I

have included the full range of a full musical bar to triplet 1024th notes, and on the MIDI

frequency list side, I have included all 128 chromatic MIDI notes. At 120 BPM45, this spans a

range from 0.5Hz to 12,543.85Hz. MIDI note "0" is just over 8Hz, so these lists start weaving

together much sooner than in Stutter Edit's version.

Figure 29. How Touchpoint 's quantization indices are represented in Reaktor/Lemur

This index list (depicted in Figure 29) unifies how each of the three processor modules of

Touchpoint respond across the X-axis. Because I chose three parametric characteristics that

align with my perceptual modulation spectrum, each module explores the minimum and maximum

domains of several different perceptual phenomena, and sometimes the transitional space

between them, such as the critical threshold between glitch editing and wavetable synthesis that was

previously described regarding the buffer-based module.

Unfortunately, because Reaktor cannot accept dynamically re-arranged arrays of strings, these

values must be expressed - rather obtusely - in the interface as integers ranging from 0 to 160.

This also makes pinpointing an index value associated with a particular desired value that would

live somewhere between the two interweaved lists, such as a 32nd note, or the note C2, difficult

and different to locate every time.

45 Beats per minute.

48

This has led, in my performance practice, to the memorization of certain shorthand ranges. For

instance, if I want to deal exclusively with large rhythmic values, I know that it is a safe bet to

scale a processor's range down to about 0 to 33. Likewise, if I wanted to deal with midrange

chromatic notes, I'd set the processor's X-axis range to something like 60 to 100. If I want high-

pitched, alias-heavy artifacts, 120-160 should do the trick.

Figure 30. A simplified summary of multi-range modulation perception

A summary of each of the three modulation parameters as they are swept across the "perceptual

modulation spectrum" - from below 1Hz to over 20KHz, with sinusoidal and pulse waveforms -

given an A440Hz sine wave input signal, is depicted in Figure 30.

In practice, the 161-value table calculated per each master tempo update is applied to the X-axis

value of each processor, which simply comes in as a 32-bit floating point number from 0 at far

left to 1 at far right. If the current processor is a Comb and its type is set to Stutter, the relevant

memory space in Touchpoint's bank of processors will be sent an integer buffer size. (Floating-

point buffer size interpolation has yet to be added.) If any other processor or mode is selected,

49

the relevant memory space receives a floating-point frequency value in Hz, given that floating-

point X-position's nearest index of the possible 161.

Figure 31. "Side B" configuration page of Touchpoint version 0.5.10a in Reaktor

Reaktor was chosen as the platform of choice for executing these synthesis methods - depicted in

Figure 31 - over other popular audio development languages with similar functionality such as

Max/MSP, Pure Data, SuperCollider and Csound for several reasons:

• Reaktor is optimized for the best possible sound quality at every stage of prototyping.

Max and others may be clearer in programming style, requiring much less environment-

specific safeguarding, but they require more sound-design and non-linearity modeling

(i.e. tweaking) in anticipation of building release-ready products (ergo, things that just

sound good from the beginning).

• By using a construction platform that can also run as a plug-in inside of a DAW, we

inherit all of the built-in handlers for external clock synchronization, master tempo,

parameter automation, etc. afforded to the VST/AU/RTAS/AAX et al. formats. This

50

would otherwise be a tremendous amount of external SDK46 and API work to piggyback

off of. This could be gained back in another environment, possibly by using ReWire and

IAC47 MIDI busses, or objects like "transport" in Max, but then MIDI ppqn48 becomes

involved in a way that shouldn't be necessary. If Max for Live was used, this would also

piggyback onto a master DAW's features, but then the developer's hands would be tied

to exclusively using Ableton Live. None of these options can be packaged as a self-

contained group of files or as an installer.

• Reaktor is one of very few mainstream music production products that features just as

robust of an OSC mapping implementation as it does MIDI. As of Reaktor 5.8, MIDI

and OSC are even unified under the same "Learn" menu. The implementation is not

perfect: Reaktor cannot parse or generate strings, and sending strings to Reaktor crashes

the program. But, having the ability to use OSC in a mainstream product with no

middleware translation is very useful.

• The Music Technology department of CalArts is sponsored by Native Instruments. The

department encourages strong engagement with Native Instruments platforms. My

internship in Berlin with the Research department of NI headquarters was the result of

this partnership, and it allowed me to develop Touchpoint's core concepts with some of

the world's best Reaktor builders and product designers.

• Due to his tutelage under Reaktor developer Martijn Zwartjes, my advisor at CalArts,

Owen Vallis, is fluent in communicating DSP concepts specifically using the Reaktor

platform. Coming into CalArts primarily with experience in Max/MSP and Csound, my

learning to use Reaktor would allow us to examine ideas together most effectively.

• Given its historical use in the JazzMutant era, Lemur is highly optimized to interface

specifically with Reaktor. Native Instruments49 and Liine50 each provide extensive support

for interfacing Lemur with Reaktor. Both companies publicize a folder of Lemur .jzml

layout files that interface with a set of modified Reaktor Library Content Ensembles with

pre-configured OSC handlers to work with the Lemur layouts51.

46 Software development kit, here, referring to the Steinberg VST 2.4 SDK, for example.
47 Inter-application communication.
48 Pulses per quarter note.
49 http://www.native-instruments.com/en/support/knowledge-base/show/1000/how-to-set-up-lemur-with-reaktor-5.8-mac
50 https://www.liine.net/en/support/lemur
51 https://www.liine.net/en/products/lemur/premium/ab-lemur-bundle

51

• The Reaktor Core environment executes compilation and execution instructions at a lower

level than the pre-compiled ("Primary") runtime environment, close to the processor

hardware. Audio processing environments and projects tend to get very complicated

very quickly, and the ability to leverage low-level execution with visual programming is

favorable.

3.3 The interface

In this section, the control interface of Touchpoint on the Lemur interface is described. It begins

with an overview of how to select objects for the environment and what each of their functions

is. It then goes on to describe how to select the input audio signal source, as well as an

explanation of how the "perceptual modulation spectrum" has been presented on the interface.

The mechanic of activating the input signal from the processor fields is described.

Figure 32. Version 0.5.10a of one of Touchpoint 's main Performance Pages

Pictured in Figure 32 is the typical appearance of one of the main Performance Pages in Touchpoint.

There are three pages of three available effects slots, each one of which can contain one of three

effects types. A slot can also be set to "OFF" which has no effect when touched.

52

Each processor was selected for its capacity to represent many different phenomena along a

perceptual spectrum, and for its versatility in application. The menu for selecting them is detailed

next, followed by an in-depth examination of each of the processors.

3.3.1 Object choices

Table 2. List of Interface Parameters, Global and Effect-Specific

Device Parameters
GLOBAL Onset, Release, Latch, Reinit, TouchEnv, Min Freq, Max Freq

Amplitude Modulation (AM) Waveform, Polarity, Invert, Pulse Width
Frequency Modulation (FM) Waveform, Polarity, Invert, Pulse Width, Depth

Comb Type, Wet/Dry

The user selects between one of three objects using the menu shown in Figure 33. Their specific

configuration options are listed in Table 2.

Figure 33. Effect selection drop-down menu per effect slot

The AM object changes the input's gain, with switchable polarity. Bipolar gain modulation

inverts the phase of the incoming audio signal for half a cycle. The FM object has a crude zero-

crossing counter-based pitch tracker at the input, as a means to perform realtime pitch shifting

on live input, specified in semitones, also with switchable polarity (root-up or up-down). The

phase of both of these modulating oscillators can be inverted, and can also be switched from

sinusoidal to a pulse wave (with variable pulse width), a sawtooth, or a triangle. The Comb object

is a sample buffer with two modes; with or without feedback. The Feedback mode acts as a

53

rudimentary Karplus-Strong plucked string (Karplus and Strong) without a filter, and the Stutter

mode simply loops input material at the specified length until release.

Figure 34. Top-level overview of the Ampli tude Modulat ion effect in Touchpoint

3.3.1.1 AM ef fe c t

Table 3. Perceived Effects of Modulation of Gain by Sinusoid and Pulse Wave

Modulation Rate Sinusoid Pulse Wave
Slow (<1Hz-5Hz) Fade-In/Out Mute

Medium (5Hz-20Hz) Tremolo Gate
Fast (20Hz-20KHz) Ring Modulation Ring Modulation

The Amplitude Modulation module (shown in Figure 34) is essentially nothing more than the

incoming audio signal multiplied by the value of an incoming periodic oscillator to change its

gain, as well as phase, depending on the polarity setting of the modulating oscillator (see Figure

35). Each of the global and effect-specific controls is laid out in the settings page above the

processor's XY field (see Figure 36). The application of the perceptual modulation spectrum

upon incoming gain is expressed in Table 3.

Figure 35. The Ampli tude Modulat ion module's guts... it's just an amplifier

54

Audio is only piped into the module when the Sel input for that slot is set to 1, which indicates

AM. Based on a menu selection, one of four basic waveform shapes (sine, triangle, sawtooth,

pulse wave with variable pulse width) is rendered by modulation oscillator block.

Based on a Polarity flag, the multi-waveform modulation oscillator will either output from -1 to 1

or from 0 to 1. There is generally no need to use the Bipolar option at rhythmic units, since all

that will change about the incoming audio is that the phase will be inverted 90 degrees for half

of the cycle. At slower rates like these (sub-1Hz or so), generally only the Unipolar mode should

be used, which will fade the incoming audio up and down out of silence.

Figure 36. Lemur-side effect-specific menu for the AM effect

Based on the incoming Frequency, which is received by translation from that XY field's X-axis

position and the scaled range assigned to it, slow rates will produce fades in Unipolar mode. At

faster rates, a sinusoid will produce sum tones only at the frequency of the root note of the

incoming audio signal plus the frequency of the modulation oscillator. This sum tone and the

original note will be heard simultaneously. In Bipolar mode, the sum and difference tones of true ring

modulation will be produced. These will be heard as the aforementioned sum tone, as well as a

difference tone, described as the root note of the incoming audio minus the frequency of the

modulating oscillator. In Bipolar mode, only the sum and difference tones will be heard; the original

pitch of the incoming audio will be lost.

55

Interestingly, it is very easy for these sum and difference tones to wrap back around over 0Hz and

22,050 Hz (or whatever the Nyquist frequency (Nyquist) of the Touchpoint session is),

respectively. This can cause the system to respond with two relatively close midrange frequencies

at extremely high modulation frequencies, sometimes refracting twice over the critical bands of

aliasing.

If using waveforms other than the pure sinusoid at audio frequencies, the resulting response will

be more harmonically complex than two frequencies per one input frequency. Ostensibly, they

will follow the rules of their harmonic construction: a pulse wave or triangle wave will produce

sum and difference tones at every odd harmonic, a sawtooth wave will produce sum and difference tones

of all harmonics falling off at -6dB/octave, etc.

If the pulse wave is selected, a variable pulse width knob will be presented in the interface that

moves from -0.99 to 0.99. At slow rates with Unipolar polarity, this can effectively create the

sound a shuffle to a gated step sequence. At faster rates with either polarity, moving the pulse

width "thins" or "thickens" the resulting timbre, as one would expect with traditional keyboard

synthesizers, except with the input oscillator being an incoming audio signal.

If an Invert flag has been selected in the interface, the outgoing value of the modulating oscillator

waveform is multipled by -1, resulting in an inverted phase. An interesting application of this is

to take a slow frequency, Unipolar sawtooth waveform and invert it, so that rather than acting as

a linear fade-in, it sounds as though it's behaving like a sharp attack-release envelope which is

being constantly pinged by a step sequencer, starting at full amplitude and fading down to

silence over the exact duration of the wavelength period.

The raw 0 to 1 value of the Y-axis from the XY field is simply brought to a power of 0.4 for a

logarithmic scaling which responds more naturally to the range of the adjusting finger before

being send as a 1 to 0 value for adjusting the Wet/Dry balance of the Amplitude Modulation.

56

Hooks are placed into the running phase of the modulation oscillator which will be sent out of

the master Core cell upon Snapshot storage, and which can be piped and merged into the running

modulating oscillator phase upon Snapshot recall.

Figure 37. Top-level overview of the Frequency Modulat ion effect in Touchpoint

3.3.1.2 FM ef f e c t

Table 4. Perceived Effects of Modulation of Pitch by Sinusoid and Pulse Wave

Modulation Rate Sinusoid Pulse Wave
Slow (<1Hz-5Hz) Wow/Flutter Siren

Medium (5Hz-20Hz) Vibrato Yodel/Arpeggio
Fast (20Hz-20KHz) FM Synthesis FM Synthesis

The Frequency Modulation module (shown in Figure 37) was created around a principle I had in

mind that required some extra research in order to implement. If changing the gain of an

incoming audio signal in an unquantized, perceptually smooth way is such a simple mathematical

operation, shifting its pitch should at least superficially be as well, even though I knew it wasn't

as simple.

Several pieces of pre-fabricated Reaktor programming were re-tooled in order to suit my

purposes. The application of the perceptual modulation spectrum upon incoming pitch is

expressed in Table 4, and its effect-specific controls as they appear on the interface are shown in

Figure 40.

Something needed to be created that could receive a modulation oscillator whose output

describes +/- a certain amount of semitones and performs that transposition accurately - despite

the logarithmic mapping of frequency across pitch indexes. If this processor was successful, not

57

only could legato pitch shiftings be performed, but the processor could be sped up at audio

frequencies to do clangorous, inharmonic FM Synthesis on realtime audio input.

The algorithm I used for pitch tracking inside Reaktor actually comes from another Tim

Exile/Native Instruments which required excessively precise pitch tracking of a monophonic

input signal, ostensibly a voice coming through a microphone: The Mouth.

Figure 38. Pitch tracking algorithm, modified from Tim Exile's The Mouth

The pitch tracker found in The Mouth (shown in Figure 38) begins with a notch filter centered

around a reasonable range for the human voice - a low-pass filter at 60Hz and an adaptive

threshold at 10KHz, which is updated by further analyses. This is a basic erroneous data

safeguarding measure - a filter set by a spectral envelope follower. From here, audio is fed into a

magnitude estimator that pings an impulse generator, which generates unipolar impulses at the

magnitude detected within a certain comparison period.

This gets fed into a peak detector, which drives a zero-crossing counter whose positive impulses

drive a time co-efficient that is then converted from a period to a MIDI pitch, with pitch bend

offset expressed in the mantissa. Essentially, this is a slightly optimized and modified zero-

crossing counter-based pitch tracker. Such techniques have been in use in DSP since the early

1980s.

Figure 39. Semitone modulation scaler algorithm

58

This tracked pitch (expressed in Hz as a frequency) is now sent to a new algorithm (shown in

Figure 39) which accepts three inputs: the tracked frequency, the current -1 to 1 (or 0 to 1)

position of the modulating oscillator, which works identically to the modulation oscillator of the

Amplitude Modulation block, and a Depth argument from the UI which is an integer indicating

chromatic semitones from 0 (no change) to 36 (three octaves difference).

The full-range modulating oscillator is multiplied by the Depth argument, so that, for example, a

bipolar octave's difference would change the modulating oscillator as going from -1 to 1 to going

to -12 to 12. The tracked frequency is converted back to a MIDI pitch and added to the

chromatically re-scaled modulation oscillator value, creating a net modulated delta pitch sum.

This combined block is then converted back to a frequency and subtracted from the original

tracked frequency. The end result of this process is a tracked frequency moving up and down

the appropriate amount of Hertz to describe the exponential shift necessary to perform the shift

as an input to a pitch shifter of some sort.

Figure 40. Lemur-side effect-specific menu for the FM effect

The exponentially-corrected shifter frequency vector is passed to Frequency Shifter Macro which is

pre-fabricated from the Reaktor Factor Library. This Macro appears to involve phase shifting and

some kind of Hilbert Transform-esque method to achieve its goal. This technique was deemed

59

to be the appropriate choice since Fourier-based Reaktor techniques could not withstand

receiving transposition messages so quickly without fracturing in sound quality and CPU usage.

As previously described, the Frequency Modulation effect's modulation oscillator block behaves

exactly the same as the Amplitude Modulation effect's modulation oscillator. In application, this

means that Bipolar Polarity settings will shift the pitch of the incoming sound both up and down

from the originally detected pitch, which can obscure the original pitch entirely. Unipolar settings

will shift the incoming pitch up the specified amount; flipping the Invert flag will make it travel

that amount down instead.

Figure 41. Top-level overview of the Comb effect in Touchpoint

3.3.1.3 Comb e f f e c t

Table 5. Perceived Effects of Buffer Repetition, with and without Feedback

Modulation Rate with Feedback without Feedback
Slow (<1Hz-5Hz) Echo Loop

Medium (5Hz-20Hz) Delay Glitch/Stutter
Fast (20Hz-20KHz) Comb Filter Table Lookup

The Comb module (shown in Figure 41) is constructed differently from the AM and FM

modules, not only because it is not driven by a waveform oscillator, but also because it is

fundamentally two sub-effects that are routed and selected by a top layer. So, not only does the

60

Sel flag have to match 3 for an effect type of Comb, but a Comb Type is specified; 0 for Feedback

and 1 for Stutter.

The application of the perceptual modulation spectrum upon the repetition size of a buffer of

incoming audio is expressed in Table 5, and its effect-specific controls as they appear on the

interface are shown in Figure 43.

Figure 42. Top-level overview of the Feedback type of the Comb effect in Touchpoint

The structure of the Feedback sub-effect (seen in Figure 42) is familiar: a first-finger activation -

or the end of a release envelope - clocks the Sample Rate Clock pulsing into the effect. The

Frequency argument stemming from X-axis movements is low-pass filtered - as is a Wet/Dry filter,

this time, from an effect-specific page for the Comb block.

Figure 43. Lemur-side effect-specific menu for the Comb effect

61

Inside the Feedback algorithm (shown in Figure 44) is a filter-less version of the Karplus-Strong

plucked string algorithm (Karplus and Strong). The audio signal enters into one channel of a

two-channel mixer, where it passes through a four-point interpolated unit delay of a time

specified by a frequency on the X-axis. This is then multiplied by a feedback coefficient between

0.5 and 1, provided by a mapping to the Y-axis. The delayed signal is recursively fed back into

the second input of the two-channel mixer.

An algorithm metered by the envelope threshold used for the clock driving algorithm, incoming

master tempo 16th note pulses, a possible reset message from a second finger and the incoming

X-axis frequency makes sure that the signal from the previous time the delay unit was used does

not reach the output stage before the incoming audio does, draining the line after the release

envelope has closed.

As long as a finger is active, a multiplier for the delayed path is set to 1, allowing it to pass

through into the recursion loop. As soon as the effect has ended, this "boolean timer" is set to

zero, draining the line as it gets clocked out. Likewise, a second finger tap will also drain the line

and begin re-filling it at the next master 16th note. This lends an aspect of a performative delay

unit that is somewhat unique to Touchpoint.

Figure 44. Inside the Feedback Type of the Comb effect

Once again, a large chunk of the code of Touchpoint is indebted to Tim Exile. The Stutter mode of

the Comb effect (shown in Figure 45) is actually only a slight modification of Tim's Glitch Macro

that is provided in the Reaktor Factory Library of Core Cell Macros. It has been cleaned up and

62

slightly better annotated, and some of the trademark mechanisms behind all of the other effects,

such as the envelope-recursive SRC Gate algorithm, 16th pulse quantized touch latching, and a

crossfading envelope have been added.

Figure 45. Inside the Stutter Type of the Comb effect

This is the only module that does not process the Y-axis input in any way - it simply maps from

0 to 1 as a volume scaler for the master output of the stuttered buffer.

A second finger tap will re-sample the stutter buffer at the next master 16th note. This is a very

pleasing and dramatic effect - sliding up in frequency (and therefore down in buffer size) will re-

sampling as fast the system allows (16th notes, by design) creates some very cool, tonal, formant

frequency-esque wavetable synthesis sounds.

3.3.1.4 Objec t summary

The combination of each processor's versatility of application, in combination with the dynamic

results of non-linear system combination, allows for an extremely potent set of tools that are

capable of going in any number of directions with the slightest parametric change. By changing

the frequency of an oscillator modulating a signal's gain, what once sounded like an amplitude

envelope being periodically re-triggered has now placed a mirror to the root note of the

incoming frequency and folded its spectral character around a pivot point. By changing the

frequency of an oscillator changing a signal's gain, the sonic result could move from a subtle

"wow and flutter" effect to a dramatic FM Synthesis timbre with one motion.

63

Whereas the use of the objects themselves within the main "chaining" interface has been

described, there are many other factors before and after the main performance processors that

much be accounted for in the interface, preparation-wise.

3.3.2 Input selection

Touchpoint begins with a input signal selection page (Figure 46). The user can select between an

incoming stereo audio signal, or to use a simple multi-waveform subtractive synthesizer with a

state-variable filter that is placed at the beginning of the chain. Regarding this input synthesizer,

the user can select whether or not to turn the amplitude envelope on or off, meaning that the

user can manually trigger the sound of the synth using an external MIDI keyboard, Touchpoint

effect slot activations, or just let it constantly run through the system.

Figure 46. Input Selec t ion/Synthes izer page of Touchpoint 's interface

3.3.3 Range scaling

The resolution and scalability of the modulating oscillators that drive each of these objects is

designed to allow for crossing over from musical timeframes, through control rates, to audio

rates. See Section 3.2.2 for more information about this.

3.3.4 Touch interaction

Touching an XY field associated with a certain effects slot places the effect - with the relevant

mappings for the X-axis (normally a frequency or buffer size in samples of some description)

and the Y-axis (normally a depth or volume control of some sort) at the front of the effect

64

chain. The effect introduction is dictated by the "Onset" and "Release" time constant knobs, from

0 to 80, in the Global page of every processor (shown in Figure 47). Each effect introduction and

exit abides by that slot's envelope settings. Each effect has a "Global" page that lets the user

"Latch" the effect - the same as holding their finger down at those exact X and Y coordinates - as

well as adjust the slot-wide Onset and Release co-efficients, re-scale the range of the X-axis

according to the 161 available indices, and reinitialize the effect with the "REINIT" button.

Figure 47. A typical Global sub-page

As of version 0.6a-rev1 of Touchpoint, each Global sub-page contains a toggle button labeled

TouchEnv. This button links the activation of an effect directly to the activation of the amplitude

envelope of the input synthesizer. In previous versions of Touchpoint, this was a programmed-in,

system-wide setting. This feature allows users to modify their XY mappings without triggering a

global audition, if, for example, they wanted to modify a sound during another slot's long release

without re-opening the gate to the input to full strength.

Tapping an XY field with a second finger will reset the phase of a modulating oscillator. In the

case of the Comb effect, a second finger tap will dump the contents of the current buffer and

begin re-sampling. An application of this is using a very slow inverted unipolar sawtooth

modulation oscillator to create a "dive-bomb" or "air-horn" type effect and then rapidly tapping

with the second finger to repeatedly trigger the pitch shift from its beginning. One could use this

same wave shape in AM mode to repeatedly trigger a sharply decaying sound, given a long

enough frequency to the inverted sawtooth amplitude shape. In this capacity, the AM module

acts like a triggerable amplitude envelope for the incoming signal. Another nice sound with this

65

effect is to have a Feedback-type Comb module responding at a lower-midrange frequency with

~100% feedback ratio - so that it quickly saturates - and then dumping and re-sampling at the

downbeat of a new phrase. It creates kind of a strange, saturated, tonal, distortion-heavy,

sidechaining sort of effect.

3.3.5 Performative linear mixing

Figure 48. The performative Mixer of Touchpoint , versions 0.6 and below

For much of Touchpoint's lifespan, re-serialization had not been implemented as intended. Prior

to incorporation, the instrument simply worked as a permanent serial chain - without object

copy and paste - which is still effective for testing and performing with many other aspects of

the system. The user simply populates a chain of nine slots, flowing left to right, by a row of

drag-down menus, which then displays the XY field and configuration options of that processor

- some of which are global, such as the attack-release envelope of crossfading the processor's

influence downstream, and some of which are processor-specific.

The performative Mixer (shown in Figure 48) allows for the ability to "roll-back" the influence of

individual objects upon the resulting signal chain in either direction, i.e. crossfade in or out a

per-object wet/dry control as a linear vector across the effect chain. Each object has its own

signal strength (wet/dry) control in addition to this global presence fader. Finally, a toggleable,

state-variable filterable feedback loop is placed at the end of the chain, with high-pass and low-

66

pass modes and a variable feedback amount, up to 90%. This feedback thread also has a variable

vector crossfade to choose which point of the chain to send back to the input from. Its tap point

is independent from the source tap point.

This feature may be less interesting with objects that do not contain input analysis, but with the

FM object, for instance, different per-object wet/dry levels can result in completely new pitch

outcomes to the next object in the chain. The mixer becomes sort of a pitch sequencer, in this

way. (The design of the AM and Comb objects may become additionally modeled after this

interesting primitive analytical feature of the FM object in subsequent revisions of the software.)

Each active slot of the possible 9 is highlighted red, whether that be from held-down fingers or

latched slots. This helps provide a helpful visual cue for which slots the player(s) mix will have

an audible effect when being adjusted at that moment.

Lemur was chosen over other popular mobile device touchscreen interface prototyping platforms

with similar functionality, such as TouchOSC, Control (Roberts, Wakefield, and Wright), Beatsurfing,

TUIO/TUIOdroid, and MIRA (Tarakajian, Zicarelli, and Clayton) for several reasons:

• Lemur's wireless connection support is much more stable compared to most others,

whether connecting through an IAC bus application to send MIDI, or just inputting and

outputting across local network IPs and ports to send OSC. In the author's experience,

for whatever reason, Lemur Daemon has much greater stability than TouchOSC Bridge.

• By a similar token, connecting to a recipient mobile device to push a new interface

layout, while still not perfect, works much better when using Lemur Editor versus

TouchOSC Editor, or editing a layout on the device for Control or Beatsurfing. Lemur Editor

is robust enough to allow for a streaming connection, so that in-app widget

modifications and value changes are reflected instantly on the desktop editor, and widget

modifications on the desktop editor will show up in realtime on the mobile device

layout.

• Lemur allows for in-app widget modification to a layout. Cycling 74's MIRA and Lemur's

most popular competitor, TouchOSC, does not allow for this. Beatsurfing relies on in-app

editing only, to the point where on-the-fly layout modification mid-performance is

encouraged. This is undesirable in the case of Touchpoint.

67

• Lemur layouts possess global variables, arrays, internal memory, "Container" sub-windows,

addressable object attributes, and an expansive object library, including math operations,

and access to internal iOS features, such as accelerometer, internal time, and battery life.

This is an incredibly important feature, as it allows for conditional behaviors and widget

scripting. Lemur "scripting" enables the user to write function callbacks that output

custom messages, change currently displayed Container tabs, modify widget attributes and

more. This can sometimes allow for the near-perfect illusion of state-perfect

synchronization with the computer software it's controlling. These features were used

extensively throughout the Touchpoint Lemur layout. Very few of the facilities provided by

the Lemur software were un-utilized in the Touchpoint layout.

• While MIRA actually provides many very clear advantages over its competitors, such as

zero-configuration device pairing, robust gesture recognition (swipe, tap, double tap,

partitioned window space, pinch, zoom, twist), and a transparent memory state which is

synchronously linked to its master project, Lemur exists independently of host software.

MIRA layouts have perfect synchronization with Max/MSP patchers, but they can only

be used with Max/MSP, and have many object-specific special features. Lemur is just a

really fully featured widget toolkit that outputs MIDI and OSC wirelessly.

3.4 Multiplayer functionality

Figure 49. Single- and multiplayer software configurations of Touchpoint

68

Touchpoint can be performed by one musician, or many musicians can manipulate one session.

Or, any other combination therein can be achieved: one musician could play the same control

gestures into multiple Touchpoint sessions; networked sessions could play alongside solo or other

networked sessions; so on and so forth.

If only one musician is using Touchpoint, two pieces of software are used across two devices. If

More than one musician is using a Touchpoint instance, three pieces of software are used across

two devices. The graphic in Figure 49 explains how this breaks down.

For the networking component, ChucK was chosen as the optimum middleware solution. One of

ChucK's many design principles is that it is optimized to be a lightweight client for low-

configuration networked performances (Wang, The Chuck Audio Programming Language. a Strongly-

Timed and on-the-Fly Environ/mentality). This, combined with the CalArts Music Technology

department's relationship with ChucK creators Ge Wang and Perry Cook, made it the perfect

augmentation software to handle multiplayer Touchpoint performances.

Figure 50. "multicastingHost.ck" running in MiniAudicle

Specifically, Touchpoint is using a feature of ChucK that is new as of the recent ChucK beta 1.3.2-

rev3: address path-less OSC port listening is now possible thanks to the .listenAll()

callback. Operational code written using this new event listener is shown in Figure 50.

69

Combined with ChucK's capability to do UDP52 multicasting, the operator of the Touchpoint host

computer can simply configure the ChucK file for the relevant IP53 addresses and ports, and fire it

up file in the command line. The ChucK server spawns a processor thread per device to

asynchronously receive control instructions from multiple tablets, forwarding them to Reaktor,

while Reaktor synchronously reports GUI changes to each of the respective tablets.

3.5 An example workflow

Typically, when working with Touchpoint, the author has found it most constructive to think

about sound design visually, such as in the graphic shown in Figure 51. Alternatively, a text

narration of the thought process behind working with Touchpoint follows this paragraph.

The user begins a session at a typical 120BPM tempo with a single A440Hz sine wave for an

input signal. Input source enveloping is completely turned off, so that the user can hear the full

chain from beginning to end at all times.

Figure 51. Graphic depicting rough visual representation of sound design in Touchpoint

52 User datagram protocol.
53 Internet protocol.

70

Intending to create sum-and-difference frequencies using ring modulation, the user adds an AM

object to the empty chain, with a bipolar sinusoidal modulator shape, and scaled its range of

indices from roughly 32 to 88: fast enough that they are outside of perceivable rhythmic units

(sub-64th notes or so), but slow enough that they resultant frequencies will not alias and wrap

back around from less than or equal to 0Hz and above 20KHz. The modulator is set to a bipolar

sinusoid, and the user activates the AM object somewhere in the middle of the X-axis. This

splits to original 440Hz tone into two midrange sine tones. They latch the X-and Y-axis settings,

holding the activation envelope of this object open.

Intending to then create complex, inharmonic, clangorous, Bessel function bell-like tones based

off of the two new fundamental frequencies, the user adds an FM object next into the chain,

scaling its indices beyond 120 or so, to ensure that the rate of pitch change is at a very high

audio-rate frequency. The modulator is set to a bipolar sinusoid and its total pitch shift is set to

12 semitones or more. The settings are latched.

Intending then to create a very short series of spectrally complex impulses based off of the

resulting sound, the user adds another instance of the AM object, placing its indices from 0 to

roughly 20; something like 1 bar to 32nd note triplets. The modulator is set to a unipolar pulse

wave with perhaps a sub-10% pulse width. The user places their finger somewhere in the middle

of the X-axis, creating rapid 16th note pulses out of their inharmonic, dense cloud of an input

sound.

The user then uses those pulses as an excitation for a Karplus-Strong model by adding a Comb

object to the chain, setting its Type to Feedback, scaling its indices to a midrange frequency (32-80)

and setting the Y-axis, mapped to feedback amount from 50-100%, to somewhere in the middle.

Each pulse now excites a resonant string with a relatively long decay time, greater than perhaps

one second.

The user calls up another FM objects in order to gradually drift the pitch of these string

excitations overall gradually within +1 semitones of the original pitch, setting its modulator to a

unipolar sawtooth wave and latching it. Another Comb object is then created of Stutter Type and

71

the full range of indices with a quick attack-release activation crossfade envelope and then

performatively stutters the sound while also moving around the pitch of the previous Comb

instance.

3.6 Conclusion

The rise of iOS and Android-based products has brought the age of ubiquitous computing to

bear. Within a single form factor packed with common sensor technologies, embedded devices,

personal computers, and controller interfaces can converge into one object. Nascent research

created for previous iterative post-PC platforms like older mobile phones (Essl), PDAs

(Tanaka), and Wacom tablets (Zbyszynski et al.) can be incorporated into an easily-developed

application for an iPhone or Nexus device without abstracting its initial objects.

By subtracting the need to fabricate or otherwise augment a hardware platform from the scope

of the product design, the software on the ubiquitous platform along describes the instrument.

The success of well-known iPhone apps like SMule's Ocarina (Wang, “Designing Smule’s Iphone

Ocarina”) and ZooZMobile's ZooZBeat (Weinberg, Beck, and Godfrey) are strong examples of

this concept reaching a mainstream audience. Continuing the legacy of the original Lemur are

interface-building programs like Hexler's TouchOSC and Charlie Roberts' Control (Roberts,

Wakefield, and Wright), which make rapid, iterative prototype development of similar

instrument apps on these devices possible.

The reason for choosing Apple's iPad as the target tablet is fairly simple and practical.

• By conforming to a very steep compatibility curve, Apple products ensure a consistent

user experience and hardware profile range. Generally, if a developer makes something

work on iOS, it will work on all iOS devices. While this is certainly a design goal for

Google with their mobile operating system Android, their decentralized structure,

separating hardware manufacturer from software developer, means that Android devices

can run a whole range of different profiles. Developers sometimes have to maintain

carefully annotated lists of devices that their application is not to run well or not run well

at all on.

72

• Apple has gone to great lengths to ensure that communication between any iOS device

and any modern variant (~10.7+) of their desktop operating system, OS X, is as smooth

as possible. Touchpoint was developed on an Apple MacBook Pro laptop, and so a

minimum of driver issues, file format compatibility, etc. was encountered vs. using

Microsoft Windows or a Linux variant.

• iOS devices are the single most popular kind of mobile device running under a unified

support platform by a vast majority. Most people you encounter will own either a

modern iOS device or an Android device of some description in addition to their

desktop or laptop computers, and certain crucial softwares used in development do not

exist or do not run nearly as well on Android.

• The iPad 2 - which was used for the development of Touchpoint - is a very practical form

factor for consideration as a stage instrument. It is lightweight and highly visible, it

supports up to eleven independent registered touches, it packs away easily, and it has a

long battery life. It is great with connecting to ad-hoc networks, and it is the oldest

currently supported iOS tablet, serving as the current baseline for compatibility.

Touchpoint has been designed in such a way that it is capable of going in many different directions

with just three basic objects. These objects have had as many of their common controls

presented in the same way as possible, so that only the differences between them become the

"cockpit control problem" that often plagues complicated new synthesis interfaces.

It was developed in an unconventional but high sound quality construction platform that shares

many of its roots with the classic history of music synthesis development platforms by being a

modular synthesizer and a visual programming environment. This modularity translates through

to the design of the instrument that was built within it as well.

Despite this reliance upon the visual programming prototyping format for rapid feature

iteration, the overall program structure of Touchpoint was organized in such a way that it can

easily be related to a text-programming format, decoupling controllers and event handlers and

actual audio processing.

73

The choice of a touchscreen interface development platform benefits at the cause of rapid

prototype version iteration, in addition to being the ideal interface suited to such an instrument.

The use of a secondary lightweight music synthesis language that specialized in networked

messaging makes extension of the Touchpoint architecture easy. The design of the program

already inherently suggests multiplayer extensibility, and an unobtrusive middleware client is the

ideal solution, after building it directly into the program.

The technical design of Touchpoint has evolved as more performances have been made with it,

each one placing it in a different context and presenting new unforeseen issues or refinements

that could be made to make the mechanics of performance more effective. The next chapter is a

chronicle of personal responses to each of the performances, and show they've shaped thinking

about Touchpoint.

74

75

Chapter 4

Performances

Touchpoint can be used pointillistically as a conversation between multiple players, or between a

Touchpoint player and another instrument. It can process that same instrument in realtime, or

sample them and process that sample, or re-sample in real time, or jump back and forth between

grabbing the sound of the instrument and "letting them through."

Touchpoint performances can evolve slowly, like a modular synthesizer performance. The

musician builds a house of cards, and then slightly adjusts its facets until knocking it over and

starting over again. Or, the instrument can be used in rapid fire combinations. Combinations can

be quickly assembled, stored, and then slowly moved back and forth between.

The number of configurations and presentation settings that Touchpoint is set up to explore

already, requiring only rehearsal, is extremely large. In order to find out which ones would

require re-programming, adaptation, reinforcement, or other responses, I needed to get as many

documented performances as possible with the instrument featured in different contexts.

The main set of concert presentations organized for this purpose was a set I called Touchpoint

Series. Each concert aimed to present Touchpoint in a different capacity. These shows and others

are reflected upon in the following chapter.

76

Figure 52. Sam Botstein (turntables) and the author (Touchpoint) in concert, 2013

4.1 December 2013 Grids , Beats & Groups duet; Sam Botstein on Turntables

This performance (shown in Figure 52) was scheduled as part of semesterly class performance in

a course called Grids, Beats, and Groups, offered by Jordan Hochenbaum and Owen Vallis. The

course devotes its focus entirely to what it means to perform electronic music in groups, as a

duo or larger. It is the class that birthed the original Ableton Live/TouchOSC/Reaktor master

effects chain that would eventually become Touchpoint, and I took it for three of my four

semesters at CalArts.

This semester was different from the previous two in that I was not planning to make

compositions for a specific laptop setup to be performed with a specific partner that I had

rehearsed with. This would one would be a semi-composed improvisation, realized on the spot.

The tools would take the focus over the material. This would simply be a conversation between

myself and Sam Botstein, who played turntables for this event.

Rehearsals were very brief; we identified a few key points we had stumbled across as a result of

jamming, and decided to try to string them together into a deliberate order. We would let the

moments arrive with as much space between them as we felt necessary, shooting for an overall

runtime of ten minutes.

77

The signal flow was such that his master stereo output flowed directly into my stereo input, and

so we were one sound source. The choice of another electrophone that does not make acoustic

noises on its own was an interesting match, because it created the possibility that one of us could

cut the gain entirely on the signal path and it would be unclear who was responsible.

If Sam brought his master fader down, the intensity of my effects would also decrease. If I

placed a slower-speed modulation oscillator on the incoming gain of the signal, it could interrupt

scratching phrases that he was trying to communicate over other things. This kind of dynamic

showed how two electrophones can merge into one perceived instrument, even beyond the

merging capabilities of several instances of Touchpoint by itself.

The kinds of rapid gestures that are used with the turntable create some fascinating signal

amplitude excitation methods. For example, scribble scratching was an excellent way to excite a

resonant comb filter. I could somewhat emulate the sound of a scribble scratch by using a Unipolar

AM object in a sinusoidal shape at an index that was at the threshold of what a scribble scratch

frequency is - probably something like 10-15Hz.

However, this was my first ever public performance with Touchpoint, and it certainly required

more rehearsals than we managed to clock in together. In fact, I learned with this performance

that relying too heavily on improvisatory benchmarks - especially when they're literally notated

graphically for reference - just results in a rushed performance that doesn't allow moments to

exist for as long as it would be appropriate for them to say what they needed to say.

That being said, this was probably the most literal representation of two people using two

different interfaces as the source and the processor, acting as operators of one system. It is an

arrangement I look forward to attempting more in the future. The response from the audience

was remarkable, as well - they really seemed to enjoy the musical conversation that Sam and I

were having, through our eye contact and our gestures. This demonstrates that the audience

doesn't care if you're using an electrophone-type instrument; performative authenticity is derived

from the observation that the performers are having a conversation. They appreciate when one

performer can stop talking and listen.

78

To view this performance, go to youtube.com/watch?v=_mZ_yvGwqB0.

4.2 Colin Honigman: Creat ive Elec tronic Music Ensemble member

Early into the Spring 2014 semester at CalArts, I was approached by fellow MFA student Colin

Honigman. He had just joined Wadada Leo-Smith and Mark Trayle's group called the Creative

Electronic Music Ensemble, and he wanted to play Touchpoint in it. Typically, the band is equally

comprised of traditional instrumentalists and folks playing various electrophones - synthesizers,

samplers, drum machines, groove boxes, etc. This semester, Colin found himself as the sole

electronic "player."

As the sole performer of an electrophonic instrument, having Colin show up to rehearsals with a

laptop and a limited bag of tricks would not have been sufficient to meet the highly dynamic and

lucid nature of performance. This provided me with an otherwise unavailable research

opportunity: I could provide someone besides myself with a "fork" of the rapidly developing

software, allowing them to develop their own performance practice with it, outside of my

influence.

I attended the final rehearsal of the ensemble, as well as their recital. Listening closely to Colin's

playing, I was struck by some of salient differences in our basic approaches to playing Touchpoint:

• As the designer of the system, I tend to use the entire chain at once, making choices

based on my constant awareness of the number of slots I have available in the system as

a whole. Colin makes much greater use of subsets of modules, usually separated by page.

Where I can spend only a minute tweaking three processors before moving up or down a

page, Colin will often spend ten or fifteen minutes playing just one or two of the

modules at a time.

• Colin's playing tends to be much more pointillist than mine. While this is necessitated by

playing in an improvisation-based ensemble, it also serves as a much more effective test

of Touchpoint's viability as a note-level instrument. My performances end up feeling much

closer to being a modular synthesizer session, where sound is coming from the

instrument the entire time, with limited silence. Whereas Colin uses the instrument more

79

like a black box of wild sounds, which he is artfully probing. This encouraged me to

think a lot more about finding the specific sweet spots in the two-dimensional

modulation ranges, which are worth presenting in isolation, rather than just sweeping

through ranges along the axes all the time. This difference is covered in Colin's own

words in Section 4.3.2.1.

• Colin's playing in an ensemble demonstrated how much more effective slow movement

can be when underscored by other forms of musical activity. My focus on developing the

system has often led me to skimp on considering effective accompaniment for Touchpoint,

and how that changes the music you make with it.

Early feedback from Colin led to the addition of a new interface control to the Global page: by

toggling the new TouchEnv button, you can disable activation of the sound source from

activating the effect slot. That is, slots can serve a passive actuation role within a chain, their

changes being audible in the presence of other effects, but not initiating an audible chain in their

own right.

4.3 Touchpoint Ser ies 1-3 , February - May 2014

The Touchpoint Series was booked so that I had a guaranteed series of opportunities to try out

some ideas that needed long-form exploration. They were each small, informal events with a

small attendance. Each performance was video documented, and reflecting on these actually

taught me a lot about how Touchpoint performances can improve, perhaps equally with

performing in the concerts themselves. What follows is a reflection of all three presentations.

80

Figure 53. The author in Touchpoint Ser ies #1: Solo Per formance , February 2014

4.3.1 Series #1: Solo Per formance

Series #1 (shown in Figure 53) took place on February 28th, 2014. In this concert, I played as the

input source and as the Touchpoint-ist. I made a last-minute decision to improvise a 30 minute set

using only my voice through a microphone as the input signal.

This led to an interesting mechanic of using up the first of my nine slots every time as a Comb

effect set to Stutter mode, so that I could sing a note and then loop it. Turning my voice into a

periodic signal usually involved singing into the mic before I free the Stutter buffer, so that, upon

release, the system would continue to receive input. I would then "unlatch" the Stutter buffer and

then place my finger at the upper left corner of the XY field, so that my singing looped at one

bar at tempo, at full volume.

One of the ugly side effects of doing this is that the Stutter buffer has no zero-crossing

protection. Therefore, depending on where recording started and ended, the unprocessed re-

looping of the buffer sounded very obvious. Applying any effects process to it easily obscured it,

but this set involved frequently starting with a "fresh" sound via an initializing Snapshot recall,

and thus the audience is confronted with the potential for a "popping" loop frequently.

However, using my voice as a signal input allowed for many interesting excitation opportunities.

Similarly to how Sam Botstein's scribble scratch really embodied the loudness of a comb filter

81

excitation, so too did my hissing into the microphone. More often than not, the two kinds of

sounds I would sample of myself were either singing a constant note (good for spectral

refraction, pitch shifting etc.) or hushing (good for gating, comb filter excitation, and so on).

One of the most musically intriguing possibilities that had arisen from this performance was that

I could get a chain of low frequency FM units going as a melodic step sequencer, turning a single

sung note into an elaborately syncopated, pseudo-step sequenced arpeggio. I could then

modulate that entire sequence additionally by putting another slower FM behind everything else.

Since each FM unit has a basic pitch tracker in it, by unlatching a held sung note in the first-slot

Stutter buffer and singing a note higher or lower, I had the equivalent of an unprepared

modulation at my disposal. If I had decided to sing with a glissando up or down to the next

pitch, the pitch sequence would have followed my lead!

This performance used version 0.5.10a, as the Grids, Beats, and Groups concert had. This version

still used a static chain of nine processors with the performative Mixer, rather than using the The

Finger-style contextual stack management. This means that any time I wanted to drain the chain

and start over, I had to essentially hit a panic button. Moment creation was predicated around

building a chain like a modular synthesizer, and not about very quickly reacting to a sound I had

just previously made. Upon watching the performance, I was disappointed to realize that

without the "stack" mechanic, watching a Touchpoint performance in this state fails to achieve the

basic premise of embodying effects processors in a meaningful way. I had just replaced the

modular synthesizer - or the laptop - with an iPad. The audience was simply watching somebody

prod at a screen without much attention paid to anything else.

To view this performance, go to youtube.com/watch?v=9iF8bfGumjc.

82

Figure 54. Suda, Knollmeyer, & Honigman, Touchpoint Ser ies #2 , March 2014

4.3.2 Series #2: Mult ip layer Sess ion

The Series #2 concert (shown in Figure 54) used version 10.6a-rev1, which completely revised

the internal structure of the instrument, revised its OSC specification, and added the TouchEnv

functionality. This performance also necessitated the development of the ChucK-based

middleman to send synchronous multiplayer commands to Reaktor, which responded in kind

with global GUI updates.

In Series #2, I was adamant that the performance require three people of varying levels of

experience with the instrument. Consequently, I got my friends Colin Honigman - who had been

using it in Mark Trayle's Creative Electronic Music Ensemble for two months - and Chris Knollmeyer

- who hadn't ever used it at all - to participate. We decided to arrange ourselves so that Colin had

the first page with slots A, B, & C, Chris had the second page with slots D, E, & F, and I had

the third page with slots G, H, & I. (This version of Touchpoint still didn't have dynamic re-

serialization presently implemented.)

We decided on this order to play to each performer's style, experience level and strengths. Colin

was adept at using Touchpoint as a primary source, rather than as an entire orchestra, so it made

sense to put him at the beginning. By occupying the middle of the chain, Chris' actions would

effectively be the least influential, which reduced the risk of cancelling all three of us out by

83

engaging an effect he didn't know how to get out of. Finally, by placing myself at the end, I

could act as though six slots were already running for me, and I was just playing with the whole

sound its present state.

I suspected that if this performance didn't work, it would be easy to see that it could be the fault

of the performer with the least experience. I consider the performance somewhat unsuccessful,

but it was not for this reason. By my assessment, I believe that the particular scenario I had

manufactured - "three people, each in charge of three processors, one page each" was too much.

This caused as many as nine modulators to be manipulated simultaneously, which can actually

overload to the point of silence from exceeding the capacity of the system's built-in saturators.

There were too many people making too many decisions about too many processes at the same

time. It would be just as difficult to appreciate from the performer's point of view, as it would be

the audience's. In fact, my favorite moments of this show where when I would decide to step

back and completely pull out of the chain, letting the other two performers work by themselves.

There were moments when I thought we were all having a mutual moment, when I realized I

had actually just looped some of their performances, being at the end of the chain. Their input

during an entire two-or-three minute section was muted while I ran a one-bar loop that I

modulated over them. Certainly, a successful three-or-more player performance that is possible,

but such a performance should require more guidelines than the very open requirements I

provided at this concert.

In May of 2014, I asked Colin and Chris to reflect on their experiences with Touchpoint, both

during and around the time of the concert. I asked them what they found successful and

unsuccessful. I asked them to compare it to similar systems that they are familiar with. I asked

them what their favorite parts and least favorite parts about using it were. Their responses were

valuable and insightful. What follows is a verbatim transcript of their responses.

4.3.2.1 Reflec t ions f rom Col in Honigman

"Touchpoint is a novel combination of touch interface and synthesis technique that results in a multi-faceted and

expressive instrument. To begin with, it is a fairly simple interface that can be more or less understood without

84

much explanation. On the surface, it is easy to begin playing, and it is obvious that many sounds can be achieved.

With practice and exploration, the instrument is found to be capable of a multitude of sounds, with the added

ability to manipulate those sounds on micro and macro levels.

The choice of three sound generators for each unit allows for a surprising amount of variation, and provides

continuously surprising and pleasing effects. Looping, while not an independent feature, is achievable through

knowledgeable manipulation of the comb filter. In a performing context, Touchpoint allows for great control and

expressivity, and is especially useful in an improvisatory context. Repeatable performances are achievable, but

require practice, and the careful use of presets.

However, the exploratory approach is my personal favorite. This approach also makes Touchpoint an excellent

tool for sound design and sample creation. While extended performance requires more practice, for production

purposes, this instrument can be used to easily create a large amount of content with very little effort. Moving back

and forth from simple to complex timbres, many exciting sonic possibilities reveal themselves, through the

interaction of the modules.

Sonically, Touchpoint seems very similar to a modular synthesizer. However, the ability to traverse the timbral

spectrum is unprecedented when compared to the analog method of patching cables. Although, because it is digital,

it suffers and benefits from its digital behaviors. There were a few 'glitches,' in the developer’s mind, that I found to

be unique features that allowed for the creation and performance of different styles. For instance, tapping a second

finger on the XY pad to restart the phase could cause a percussive clicking sound that allowed for precise rhythmic

performance otherwise not really achievable without this 'glitch.'

While Touchpoint is similar in theory to a KAOSS pad, this is only a consequence of the XY touch interface

itself. In my past experiences with it, the KAOSS pad feels like one is merely manipulating the parameters of

different effects. With Touchpoint, the interaction is more expressive, and the output can be more surprising,

especially as modules are locked, stacked, and manipulated simultaneously.

I learned and played this instrument while rehearsing with an Electronic Music Ensemble, an improvising electro-

acoustic ensemble. I found that I had the ability to improvise a large range of dynamics and sounds that worked

well with electronic and acoustic instruments alike.

85

The instrument intrigued the other ensemble members, who would say things like, 'I don’t understand what you’re

doing, but I like it.' Like the acoustic instrumentalists, I found myself 'warming up,' creating a basic starting

palette at the beginning of rehearsal that I would change and explore variations of throughout each piece. I was

noting the combinations of parameter values, positions, gestures, and modules that seemed to work well.

With each practice (both ensemble and personal), I found that I had more control and increased ability to repeat

sounds and transitions from one sound to another. There was always the element of surprise, as there are so many

combinations available that even very small changes can have drastic results, especially when creating complex

signal chains. Personally, I look forward to continue playing this instrument, for both performance and production

purposes."

- Colin Honigman, May 2014

4.3.2.2 Reflec t ions f rom Chris topher Knol lmeyer

"Touchpoint is a valuable tool for performance because it offers the user immediate control of complex processes.

Upon seeing the visual interface, the first elements to gain attention are the three XY fields. These are obviously

very hands-on and can be used impulsively. This impulsive capacity allows for a greater sensation of spontaneity,

an element missing from much live electronic music.

The option to configure three spaces with three processors gives significant freedom to the range of playability, but is

nonetheless limited to these three qualities of effect. If I were to ask for something more within the Touchpoint

interface, it would be the ability to enter a specified range of each XY field for more specified results. This could

lend use to more arranged moments between a group of players with one or more musician performing on

Touchpoint. For example, I would like to have a delay time or modulator frequency happening close to a specific

song tempo. A choice of scaling options could behoove the XY field as well."

- Christopher Knollmeyer, May 2014

To view this performance, go to youtube.com/watch?v=Nke4oA-ZGbI.

4.3.2.3 Transduct ion into another domain

As an additional facet of this performance, I contacted fellow Music Technology MFA student

Gabriel Rey-Goodlatte and asked him to offer a particle system-based visualization program he

was working on as a projected visual accompaniment to our performance. Visible in the

background of Figure 54, the program was simply running on his laptop off to the side of the

venue, seeded from the microphone input reading overall signal loudness and spectral content.

86

While this was a very primitive utilization of multimedia content, it wasn't my last consideration

of crossing representations, or working with Gabriel on it. I first became familiar with Rey-

Goodlatte's program during work we were simultaneously doing on a production called Echo's

Chamber. This production made heavy use of networked signals triggering multiple events across

a path through the performance space. Throughout the 20 minute experience, literal acoustical

transduction, impulses from OSC, remote control from touchscreen interfaces, and feature

extraction were all employed to trigger scenarios downstream. Ideas generated from this

production led to the presentation in Series #3.

Figure 55. Flowchart illustrating the setup of Series #3: Audiovisual Instal lat ion

4.3.3 Series #3: Audiovisual Instal lat ion

Series #3 was the most divergent presentation of the set, in many capacities. Firstly, it took place

as part of a larger event, that being the 2014 Digital Arts Expo at CalArts. Secondly, it was not a

87

musical performance, but rather a single-person, interactive installation. The technical setup

requirements of this installation is detailed in Figure 55. Thirdly, it was not in CalArts Machine

Lab, but in the lobby of the Roy O. Disney Concert Hall. Finally, the Touchpoint premise of

contextually serialized, non-linear processor-based audio synthesis was not the core conceit of

the show: rather, Series #3 was more of a response. It was a reaction to the possibilities of this

system in a greater context with the systems of others, given its newfound implications.

As a visual thinker, I was looking for an interesting way to frame the sonic results of Touchpoint

literally and instantaneously as a visual. Gabriel Rey-Goodlatte, who was a curator in the Digital

Arts Expo, recommended a program called PixiVisor for me to check out. PixiVisor is a playful

"porting" of the principles behind how scanlines work on a television screen. A massively cross-

platform application, PixiVisor can run on Windows, OS X and Linux PCs, as well as

smartphone operating systems like iOS, Android, and even more uncommon ones like Windows

Phone, Symbian, BlackBerry, and even PalmOS.

In PixiVisor, two devices run the application. One device is set to transmitter mode and the other

to receiver mode. The device that is “transmitting” can play back a selection of low-resolution,

simple, monochromatic animations, typically comprised of maybe under 30 frames. Each frame

is then played out of the device's audio output as a rather grating, short burst of upper-midrange

frequencies; a rather annoying "beep" which happens in rapid succession.

The content of the transmitter is sent to the receiver literally by piping it in as an audio connection.

Typically, the headphone output of the transmitter is connected to the microphone input of the

receiver. Although, one could literally go from speaker to microphone, introducing signal loss and

noise from the air in the reception process.

The developer designed this system as an exploration in this aforementioned context, but the

broader implication is that low-resolution analog video signal has now been transduced into

another domain, availing it to all of the myriad of audio processors available, in service of

creatively exploring its transformation. Therefore it becomes an obvious inquiry to see what

happens when Touchpoint is placed between the transmitter and the receiver.

88

The results (demonstrated in Figure 56) were both surprisingly codifiable, as well as an effective

visualization of the rapid changes that can occur during dynamic processing using the

instrument.

Figure 56. Selection of various results from Series #3: Audiovisual Instal lat ion

For example, the Comb module in Feedback mode tended to create a ghosting effect. If looking at a

bouncing ball, feeding a high-strength, low-frequency delay line into the system would generate

many faint, offset instances of the bouncing ball which cascade over time. Yet, a high-frequency

line would tend to create very tightly-knit copied which are more vertically aligned with each

other.

The Comb module in Stutter mode would create very striking skipping sub-frames of the image

which were also looped and offset. These had the quality of looking like "sub-scanlines" of the

existing sample frequency. They resemble the poor reception artifacts of trying to view an old

cable television channel you don't have.

89

The AM module tends to create bands of solid-color "interference" super imposed over the top

of the image. This makes sense, given the generation of additional pure frequencies that move

relative to the input pitch, and which are synthesized from the root pitches of the input

frequencies. Sweeping up on the amplitude modulation frequency tends to rotate these bands in a

clockwise direction, as they simultaneously shrink.

Polarity of the modulating oscillator also effected the image. If the oscillator was unipolar, the

bands tended to be a solid white tone. However, if the oscillator was bipolar, these interference

bands alternated between being solid white and solid black.

The FM module created effects that were similar but different to the AM module, in ways that

are difficult to articulate. It tended to garble the shape of the depicted objects in a way that, at

slow frequencies, made it wiggle. At high frequencies, the image would take on more of a noisy

embossed impression. Polarity is represented in linear motion away from the original center point,

with unipolar modulation drifting from center to right and bipolar modulation drifting both the

left and the right.

While the novelty behind these results is heavily impinged upon the author of PixiVisor's

imaging codec, the fact that each processor introduced an effect which was parametrically

different from each other and predictable in an intelligible way with the audio effect infers that

my choice of processors based on the modulated sonic parameter holds some weight. It

reinforces the idea that these choices were not arbitrary; they are grounded in principle.

Images with simple linear motion were most effective in this setup. Two of my favorites were a

loop of the Death Star bouncing as though it were a basketball, and a square which simply

expands out from the center of the picture. More sophisticated images, such as a loop of a

galloping horse, or anything in which there is activity within a scene, tended to look more

washed out and noisy beyond recognizability. Visual effects visually crossfaded out from the

original image following the same amplitude envelope as the audio effects.

90

4.3.3.1 openFrameworks inter face : Simpl i fy ing Touchpoint

Figure 57. A simplified iPad interface done in openFrameworks for Series #3

One of the challenges in adapting Touchpoint to an installation experience was knowing that I

couldn't possibly present the existing Lemur interface, with all of its "cockpit control" problems,

to anybody who walked up to it.

I needed to strip away the interface experience to its absolute core. I felt that this core

experience is the idea of traversing the XY fields throughout the whole system, which, as it turns

out, is not exactly something that was possible to implement in the Lemur interface version

anyway.

So, I stripped away the selection of modules and their settings by creating several Snapshots which

rotated every few minutes by an AppleScript running on the host computer. I also ventured into

my first major use of C++ by creating an entirely new, super minimalist interface in

openFrameworks. A rendering of this version, with four fingers active in four different modules, is

shown in Figure 57.

91

For the first time, this version decoupled the player's fingers from the active processors: You

could now put one finger down and drag it across the screen, triggering the Onset and Release

envelopes of each module as you entered or left it. You could also place two fingers down on

the same module, and each movement from each point would trigger a new message, creating

very wild, jittery, glitchy results. Additionally, the foundation has now been built in the most bare

bones sense for a completely customized UI for the fully-featured version of the instrument.

Overall, I feel this project was a fascinating examination of disembodying the control signals, the

transformative results, and the representation of using Touchpoint as separate objects. It has

inspired me to further pursue the metaphorical qualities of Touchpoint as a source for data

mapping and abstract, parametric manipulation.

4.4 California Electronic Music Exchange Concert series @ UCSD, April 2014

In early 2014, I was invited to come to the University of California at San Diego to play in the

annual California Electronic Music Exchange Concert, or CEMEC. CEMEC is a mini-tour of

sorts that involves the work of composers from CalArts, Mills College, UC Santa Barbara, UC

San Diego, and sometimes, Stanford.

While I knew that my performance (which opened the show) would be different from the others

in the sense that it was an improvisation instead of a composition, I came away from the

performance feeling very strongly that I needed to put more work into what I had done. Seeing

so many talented musicians perform with very non-traditional interfaces in such a way that had a

really captivating form and a great sense of space left me feeling very humbled. I need a lot of

work as a composer. I feel that in the process of becoming a digital luthier, I have lost a sense of

composition, instead turning every showing opportunity into a showroom floor blast of going

through the motions.

I left the concert feeling a new-found sense of reflection. I really need to write some actual

music with the new instrument, instead of spending all of my time ironing out the technical

details only.

92

4.5 Conclusion

The performances conducted with Touchpoint throughout 2013 and 2014 were all carried out

before it had reached the desired specification for version 1.0. While I was worried this would

lead to inadequately prepared material, in fact it greatly influenced the instrument's development

in very constructive ways. Colin Honigman's pointillistic use of the instrument as a note-level

modular synthesizer led me to adding the XY-field activated input envelope for the Series #2:

Multiplayer Session performance, under the TouchEnv button.

Identifying that two separate implementations of the Touchpoint concept have developed within

the building process has allowed me to refine each one to better serve their typical presentation

contexts. One system is better fit to solo concerts with a static input source, where

configurations akin to modular patches can be built and more slowly manipulated over time. The

use of a dynamic stack system is best suited to quick, rapid stabs, perfect for spontaneous

conversations with another performer on another instrument.

Simplifying the Touchpoint interface for Series #3: Audiovisual Installation so that anyone can use it

re-emphasized the value of arranging each of the processor across a two-dimensional plane, and

using your fingers as probes into points across that space, and what happens when you move

from one point to another.

Treating Touchpoint to these diverse performance contexts has shown to me that it is possible to

do too much with the system. This eventually became a point of fatigue with the CEMEC

concert. Each processor in its own right could be used for an entire etude, and while dynamically

re-combining them leads to very rich results, it becomes clear that within reason there is a

certain maximum ceiling of processors that can be used before the signal is lost altogether (best

demonstrated with my perceived failings of Series #2). This may be a failure point of effects-

based synthesis, or of its specific implementation in Touchpoint. Further testing of the principles

of Non-Linear Systems will be conducted in order to better determine this.

93

Chapter 5

Conclusion
This thesis has attempted to justify the consideration of effects processing as a mode of

synthesis and as something that should be adapted into a musical instrument in its own right.

Historical context was provided in the introduction by explaining the importance of effects

processors in contemporary popular music, due to the advent of recorded music, which

objectified moments of sound and framed them as the definition of an entire sound or style.

It was argued that one of the byproducts of computerization was virtualization of all existing

musical sound generators, which greatly accelerated the use of effects processors, and therefore

made crucial their use in defining the sound of contemporary popular music. However, public

perception of the "ingredients" of popular music have mostly not evolved beyond the

conception of an ensemble of modern band instruments, and therefore a large cognitive

disconnect is established when none of the sounds featured in the music resemble acoustic

instruments. Traditionally, processes that cannot be pantomimed by an on-stage performer have

been relegated to the keyboardist, the off-stage tech, or the front-of-house engineer. It is then

argued that the time has come for these techniques to be embodied by a new on-stage band

member.

It was also identified that although computerization is the force that brought the current

confusing climate of concert performance to the state that it is in, computerization is the natural

pathway out. Computer music tools have a long history of encapsulating ecosystems of smaller

processes into a new, closed form factor that is to be treated as its own device. This concept

befits the idea that an environment of diverse effects processors is what could define the

94

processor as an instrument, if each processor were treated as an available "notes" within that

instrument.

The history of modular functionality within computer music tools was then discussed. The

growing encapsulation of object ontology within these paradigms is identified. The fifty year-old

definition of what a Unit Generator is - via the opcode - tends to be much more atomically finite

than modern definitions, which can include entire classes of callback functions with robust input

and output definitions, or indeed even comprehensive embedded hardware and software

platforms as they are combined with other platforms. Being that the objects of modularity

within digital music synthesis environments are so high-level and cross-platform in the current

client, using a generic construction platform for modular instrument design is logical and well

suited for the task of adapting into an instrument, versus constructing everything from a much

more atomically finite level from the ground up in a text environment.

It was observed how the modularity of musical devices had also influenced hardware

peripherals. Where once there was only the piano keyboard, there is now an entire industry of

abstracted "Controllerist" devices. It is a matter of historical momentum that eventually the

customizable touchscreen interface was developed, just a few years before a completely new

form factor of personal computer - the multitouch device - came about. New mobile devices

created a totally sandboxed platform for sensor-driven multi-touch applications to be run on a

large number of devices, creating a new culture of music synthesis applications for mobile

devices.

By focusing on the effects processor environment as new kind of instrument to be built within a

modular visual programming environment, careful consideration must be given to making this

system as flexible as possible, in terms of signal processing. In considering the benefits of

sticking only to Non-Linear processor models, we arrive at a whole new way of thinking about

effects processors as a creative process. This facet of synth design is normally treated as a

decorative function to be appended at the end of a signal chain in permanent serial routing. In

fact, placing these as central to the synthesis concept and allowing their order to be

performatively declared treats them as though the ecosystem of objects responds in the way a

musical instrument does.

95

Based on revelations related to the way a buffer can be presented as a loop or as a chromatic

frequency, it was identified that this principle can be applied to several different parametric

categories of signal processing, which liberates their application greatly outside of previously

established processors. The idea of the "perceptual modulation spectrum" is relatable to the

electromagnetic spectrum, bridging many phenomena that are typically described as separate as,

in reality, parametrically unified.

An overview of each construction platform was presented so that the specific benefits that

distinguish each platform can be considered in the context of building Touchpoint. Then,

performances with the instrument were discussed. Performing an effects processor in isolation is

a novel concept that immediately presented opportunities for refinement. By keeping the signal

input and control networking structure as flexible as possible, in which it can be a source of

sound unto itself, or a processor to an input sound, or in which it can move between these roles

within the same performance, Touchpoint can be readily presented in the many different contexts

that a post-signal, "secondary" form of instrument would inspire.

The concept of a unified signal processing system - which encapsulates a certain framework of

digital unit modularity, in order to become a single unit of live performance - is certainly not

novel. Indeed, many facets of Touchpoint's overall construction have been created before in other

contexts:

• A software embodiment of the live-looping pedal, executed in Reaktor, which leverages

the user interface and much greater storage capacity of the personal computer to make a

much broader auto-accompaniment and overdubbing ecosystem (Aldrey),

• Similar software plug-in projects which also piggyback off of the features of the DAW,

while providing their own capacity for modular sandboxing with variable "tap points" in

both the source path and the feedback path (Gibson and Polfreman),

• Encapsulations of high-level, sophisticated signal processors and routing matrices, for

performance within a line mixer metaphor, for a laptop and audio interface (Kleinsasser),

However, the placing of the simplified modular tool set of Touchpoint within the context of a

visible, personally sized touchscreen interface appears to be a novel fusion. By equally inheriting

96

the aesthetics of the KORG KAOSS Pad and Native Instruments' The Finger with an instrument-

sized footprint, Touchpoint attempts to stake out a reasonable middle ground between the "magic"

mystery of agency (Schloss) that often makes computer music performance problematic in

presentation, and the tasteful performance of an instrument that requires technique and

discretion.

By presenting each processor as a set of control widgets on a touchscreen, they are objectified

with just enough physical presence that they can be understood as individually important agents

within a greater environment. However, by existing as virtual instances, their routing becomes

the kinesthetic property of examination, and the powers of non-linear processor re-arrangement

as a mechanic of performance can be simplified to instrument-type gestures.

5.1 Primary Contributions

There are several algorithms within differently scoped levels of the architecture of Touchpoint

which are novel, either from the perspective of having been executed in a visual programming

environment, as well as what the sum of the parts does for creating an overall instrument, which

interacts with the musician in such a way that its outcomes are both satisfying and predictable.

• The appropriation of the dynamically-instantiated and destructible audio effect stack

from Native Instruments' The Finger, which led to the conceptualization of "dynamic non-

linear processor serialization",

• The appropriation of the ranging and precision mechanics of buffer sizing from

iZotope's Stutter Edit, which led to the conceptualization of "the perceptual modulation

spectrum",

• The appropriation of the zero crossing counter-based pitch tracking algorithm from

Native Instruments' The Mouth, which enabled the application of legato pitch shifting and

FM synthesis upon realtime, monophonic, spectrally simple audio input, and several

other features.

5.2 Final Thoughts

As evidenced by the current deluge of performative effects processor plug-ins, the era of the

flexible digital multi-effects instrument is nascent and active. As evidenced by the current deluge

97

of new painterly interfaces and interesting ports of existing synthesis control schema on mobile

devices, the opportunity to present the mobile device as a new vessel for an instrument is heavily

being acted upon.

Given the limited nature of working with a plug-in inside of a host, interface-wise, this format

on its own is somewhat held back in the goal of the performative effects processor. Given the

abundance of examples of both powerful custom controller mapping programs and fascinating

explorations of the painterly interface on mobile devices, this area seems ripe for exploration of a

new concept of synthesis which is accelerated by the touchscreen format.

Therefore, the definition of an effects processor instrument that combines the advantages of

working with a DAW plug-in with the advantages of using a big, friendly painterly interface seems

an appropriate match.

Touchpoint is ambiguous in many ways, and its true application potential could only be finitely

defined by greater use from more people. It is not the perfect manifestation of processes that

have only recently become real-time, but it attempts to iterate from the work being done in both

the plug-in and app worlds to begin to think about how to embody these abstract sorts of goals.

5.3 Future Work

There is still much work left to do in Touchpoint's second major iteration that will define its UX.

As alluded to by Chris Knollmeyer in Section 4.3.2.2, Range Scaling should have an additional

Appearance Scaling characteristic that enables values to be placed along an axis in a logarithmic or

some other non-linear fashion. Index quantization should behave in a kinesthetically satisfying

manner, such as the Haken Continuum54-like methods that were adopted in Moog for their key

input correction mechanic in their iOS app Animoog55.

Currently, the user reconfigures a single 9-slot serial chain specified by configuration menus,

rather than as some sort of gestural performance command for effect selection, instantiation and

54 http://www.hakenaudio.com/Continuum
55 http://www.moogmusic.com/products/apps/animoog-0

98

removal. The intended form factor of the final application is to become a self-contained iOS

application, with a mature, icon-rich interface, an extended touchscreen gesture vocabulary, and

an embedded audio engine. For the second iteration of Touchpoint, the author is currently

experimenting with creative coding libraries such as openFrameworks56, Cinder57 and JUCE58 for a

diminutive audio engine back-end mock-up.

Blocks of object chains should be groupable and re-routable. Polyphony should be extended out

as far as computationally reasonable. After somehow unifying with the dynamic stack mechanic,

performative mixing should extend to parallel chains of serial chains, instead of just one serial

chain. There should be separate interface windows for turntable-style resynchronization of the

phase of all active modulating oscillators, similar to programs like Sinkapater (Harriman). The

ability to create and edit the use of custom breakpoint oscillator waveform shapes, created by

tapping and dragging, is planned for its own menu window.

56 http://www.openframeworks.cc
57 http://libcinder.org/
58 http://www.juce.com

99

Bibliography
Aldrey, Leonardo. A Real Time Performance System for Interactively Leyered Audio Sequences. Skolan för

datavetenskap och kommunikation, Kungliga Tekniska högskolan. Print.

Attias, Bernardo Alexander, and Tobias C. van Veen. “Off the Record: Turntable and

Controllerism in the 21st Century (Part 1).” (2011): n. pag. scholarworks.csun.edu. Web. 26

Mar. 2014.

Boulanger, Richard et al. “Conducting the MIDI Orchestra, Part 1: Interviews with Max

Mathews, Barry Vercoe, and Roger Dannenberg.” Computer Music Journal 14.2 (1990): 34–

46. Print.

Carlson, Chris, and Ge Wang. “Borderlands: An Audiovisual Interface for Granular Synthesis.”

Proceedings of the 2012 International Conference on New Interfaces for Musical Expression (2012): n.

pag. Web. 18 Sept. 2013.

Cascone, Kim. “The Aesthetics of failure:‘Post-Digital’ Tendencies in Contemporary Computer

Music.” Computer Music Journal 24.4 (2000): 12–18. Print.

Chowning, John M. “Digital Sound Synthesis, Acoustics and Perception: A Rich Intersection.”

Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00)., Verona, Italy. N.

p., 2000. Web. 31 Jan. 2014.

Cook, Perry. “Principles for Designing Computer Music Controllers.” Proceedings of the 2001

Conference on New Interfaces for Musical Expression. N. p., 2001. 1–4. Print.

100

Crevoisier, Alain et al. “Sound Rose: Creating Music and Images with a Touch Table.” Proceedings

of the 2006 International Conference on New Interfaces for Musical Expression. IRCAM - Centre

Pompidou, France: N. p., 2006.

De Moraes, Lisa. “Ashlee Simpson and That Lip-Syncing Feeling.” The Washington Post 2004 :

C01. Print.

Di Nunzio, Alex. “Genesi, sviluppo e diffusione del software ‘Music N’ nella storia della

composizione informatica.” Università degli Studi di Bologna, 2010. Print.

Essl, Georg. “Speeddial: Rapid and on-the-Fly Mapping of Mobile Phone Instruments.” New

Interfaces for Musical Expression. N. p., 2009. 270–273. Web. 27 Mar. 2014.

Freed, Adrian. “Novel and Forgotten Current-Steering Techniques for Resistive Multitouch,

Duotouch, and Polytouch Position Sensing with Pressure.” New Interfaces for Musical

Expression. N. p., 2009. 11. Google Scholar. Web. 7 Apr. 2014.

Gaye, Lalya et al. “Mobile Music Technology: Report on an Emerging Community.” Proceedings of

the 2006 Conference on New Interfaces for Musical Expression. IRCAM—Centre Pompidou,

2006. 22–25. Google Scholar. Web. 7 Apr. 2014.

Gibson, Darrell, and Richard Polfreman. “An Architecture for Creating Hosting Plug-Ins for

Use in Digital Audio Workstations.” Proceedings of the International Computer Music Conference

2011, University of Huddersfield, UK. University of Huddersfield, UK: N. p., 2011. 507–510.

Gunderson, Philip A. “Danger Mouse’s Grey Album, Mash-Ups, and the Age of Composition.”

Postmodern culture 15.1 (2004): n. pag. Web. 4 Feb. 2014.

Haas, Helmut. “Über den Einfluss eines Einfachechos auf die Hörsamkeit von Sprache.”

University of Gottingen, 1949. Print.

Harriman, Jiffer. “Sinkapater - An Untethered Beat Sequencer.” 2012 Proceedings of the International

Conference on New Interfaces for Musical Expression. University of Michigan: N. p., 2012.

101

Hearst, Andrew. “Technology Puts the Recording Studio on a Hard Drive.” New York Times 11

Nov. 1999. Web. 18 Feb. 2014.

Hochenbaum, Jordan, and Owen Vallis. “Bricktable: A Musical Tangible Multi-Touch

Interface.” Proceedings of Berlin Open Conference ‘09. Berlin, Germany. N. p., 2009. Print.

Jorda, Sergi. “Digital Lutherie: Crafting Musical Computers for New Musics Performance and

Improvisation.” PhD diss., Universitat Pompeu Fabra, Departament de Tecnologia (2005): n. pag.

Print.

---. “The Reactable*.” Proceedings of the International Computer Music Conference (ICMC 2005),

Barcelona, Spain. N. p., 2005. 579–582. Web. 2 Mar. 2014.

Jordà, Sergi et al. “The reacTable: Exploring the Synergy between Live Music Performance and

Tabletop Tangible Interfaces.” Proceedings of the 1st International Conference on Tangible and

Embedded Interaction. ACM, 2007. 139–146. Web. 2 Mar. 2014.

Jordà, Sergi, and Marcos Alonso. “Mary Had a Little scoreTable* or the reacTable* Goes

Melodic.” Proceedings of the 2006 International Conference on New Interfaces for Musical

Expression. IRCAM—Centre Pompidou, 2006. 208–211. Web. 2 Mar. 2014.

Kaltenbrunner, M. et al. “The Reactable*: A Collaborative Musical Instrument.” Enabling

Technologies: Infrastructure for Collaborative Enterprises, 2006. WETICE’06. 15th IEEE

International Workshops on. IEEE, 2006. 406–411. Web. 2 Mar. 2014.

Kaltenbrunner, Martin, Günter Geiger, and Sergi Jordà. “Dynamic Patches for Live Musical

Performance.” Proceedings of the 2004 Conference on New Interfaces for Musical Expression.

National University of Singapore, 2004. 19–22. Web. 27 Mar. 2014.

Karplus, Kevin, and Alex Strong. “Digital Synthesis of Plucked-String and Drum Timbres.”

Computer Music Journal 7.2 (1983): 43–55. Print.

102

Kleinsasser, William. “Dsp. Rack: Laptop-Based Modular, Programmable Digital Signal

Processing and Mixing for Live Performance.” Proceedings of the 2003 Conference on New

Interfaces for Musical Expression. National University of Singapore, 2003. 213–215. Web. 1

Apr. 2014.

Levin, Golan. “Painterly Interfaces for Audiovisual Performance.” Massachusetts Institute of

Technology, 2000. Web. 23 Jan. 2014.

Mathews, Max V. RTSKED, a Scheduled Performance Language for the Crumar General Development

System. Ann Arbor, MI: MPublishing, University of Michigan Library, 1981. Print.

McNamee, David. “Hey, What’s That Sound: Kaoss Pad.” The Guardian 9 Mar. 2011. The

Guardian. Web. 25 Mar. 2014.

Moore, Gordon E. “Cramming More Components onto Integrated Circuits.” Electronics (1965):

114–117. Print.

Nickerson, Jeffrey V. “Visual Programming.” New York University, 1994.

Nyquist, Harry. “Certain Topics in Telegraph Transmission Theory.” American Institute of Electrical

Engineers, Transactions of the 47.2 (1928): 617–644. Print.

Park, Tae Hong. “An Interview with Max Mathews.” Computer Music Journal 33.3 (2009): 9–22.

Print.

Partridge, Grant, Pourang Irani, and Gordon Fitzell. “Let Loose with WallBalls, a Collaborative

Tabletop Instrument for Tomorrow.” Proceedings of the 2009 International Conference on New

Interfaces for Musical Expression. N. p., 2009. 78–81.

Puckette, Miller. Interprocess Communication and Timing in Real-Time Computer Music Performance. Ann

Arbor, MI: MPublishing, University of Michigan Library, 1986. Print.

---. “Max at Seventeen.” Computer Music Journal 26.4 (2002): 31–43. Print.

---. “The Patcher.” Proceedings of the International Computer Music Conference (1988): 420–429. Print.

103

Roads, Curtis. Microsound. MIT press, 2004. Web. 26 Mar. 2014.

Roads, Curtis, and Max Mathews. “Interview with Max Mathews.” Computer Music Journal 4.4

(1980): 15–22. Print.

Roberts, Charles, Graham Wakefield, and Matthew Wright. “Mobile Controls On-The-Fly: An

Abstraction for Distributed NIMEs.” Proc. NIME. Vol. 2012. N. p., 2012. Print.

Roma, Gerard, and Anna Xambó. “A Tabletop Waveform Editor for Live Performance.” Proc. of

New Interfaces for Music Expression (2008): n. pag. Web. 2 Mar. 2014.

Rosenbaum, Eric, and Jay Silver. “Singing Fingers: Fingerpainting with Sound.” Proceedings of the

9th International Conference on Interaction Design and Children. ACM, 2010. 308–310. Web. 27

Mar. 2014.

Sanneh, Kelefa. “The Rap Against Rockism.” The New York Times 31 Oct. 2004. NYTimes.com.

Web. 25 Mar. 2014.

Schlei, Kevin. “TC-11: A Programmable Multi-Touch Synthesizer for the iPad.” Proceedings of the

2012 International Conference on New Interfaces for Musical Expression (2012): n. pag. Web. 18

Sept. 2013.

Schloss, W. Andrew. “Using Contemporary Technology in Live Performance: The Dilemma of

the Performer.” Journal of New Music Research 32.3 (2003): 239–242. Print.

Smith, Steven W. “The Scientist and Engineer’s Guide to Digital Signal Processing.” (1997): n.

pag. Google Scholar. Web. 8 Apr. 2014.

Tanaka, Atau. “Mobile Music Making.” Proceedings of the 2004 Conference on New Interfaces for Musical

Expression. National University of Singapore, 2004. 154–156. Web. 27 Mar. 2014.

Tarakajian, Sam, David Zicarelli, and Joshua Kit Clayton. “Mira: Liveness in iPad Controllers for

Max/MSP.” Proceedings of the 2013 International Conference on New Interfaces for Musical

Expression n. pag. Print.

104

Trayle, Mark. Regarding Touchpoint v0.5.10a. 20 Feb. 2014.

Verplank, Bill, Max Mathews, and Rob Shaw. “Scanned Synthesis.” The Journal of the Acoustical

Society of America 109 (2001): 2400. Print.

Von Hornbostel, Erich M., and Curt Sachs. “Systematik der Musikinstrumente.” Zeitschrift für

Ethnologie 46.1 (1914): 553–590. Print.

Waisvisz, Michel. “The Hands: A Set of Remote MIDI-Controllers.” (1985): n. pag. Print.

Wanderley, Marcelo Mortensen, and Nicola Orio. “Evaluation of Input Devices for Musical

Expression: Borrowing Tools from Hci.” Computer Music Journal 26.3 (2002): 62–76.

Print.

Wang, Ge. “Designing Smule’s Iphone Ocarina.” Proceedings of the International Conference on New

Interfaces for Musical Expression. Pittsburgh. N. p., 2009. Web. 27 Mar. 2014.

---. The Chuck Audio Programming Language. a Strongly-Timed and on-the-Fly Environ/mentality.

Princeton University, 2008. Print.

Weinberg, Gil, Andrew Beck, and Mark Godfrey. “ZooZBeat: A Gesture-Based Mobile Music

Studio.” Proceedings of the International Conference on New Interfaces for Musical Expression

(NIME). N. p., 2009. Web. 27 Mar. 2014.

Wessel, David, and Matthew Wright. “Problems and Prospects for Intimate Musical Control of

Computers.” Proceedings of the International Conference on New Interfaces for Musical Expression

(2001): n. pag.

Zbyszynski, Michael et al. “Ten Years of Tablet Musical Interfaces at CNMAT.” Proceedings of the

7th International Conference on New Interfaces for Musical Expression. ACM, 2007. 100–105.

Web. 27 Mar. 2014.

105

	

