
CHUCK RACKS: TEXT-BASED MUSIC PROGRAMMING FOR THE
DIGITAL AUDIO WORKSTATION

Jordan Hochenbaum
California Institute of the Arts

jhochenbaum@calarts.edu

Spencer Salazar
California Institute of the Arts
salazar@calarts.edu

Rodrigo Sena
California Institute of the Arts

rodrigosena@alum.calarts.edu

ABSTRACT

We present ChucK Racks, a VST/Audio Unit plug-in that
brings the ChucK programming language to any digital
audio workstation (DAW). ChucK includes many unit gen-
erators that can be used to process and generate audio. In
developing ChucK Racks, many extensions to the ChucK
language were written to facilitate the flow of information
between the ChucK virtual machine and the host, including
audio, MIDI, automation, transport, and tempo synchro-
nization. This paper describes the extensions to ChucK
and how they facilitate meaningful new musical interac-
tions for performers and composers by combining the flex-
ibility of ChucK within their DAW work flow.

1. INTRODUCTION

The maturation and proliferation of digital audio worksta-
tion (DAW) software such as Ableton Live and FL Stu-
dio has greatly expanded the reach of advanced computer-
based music production, extending the digital recording
environment from the academic institution or industry stu-
dio to the bedroom studio or the garage. Many people
now make electronic music using DAW software on a per-
sonal computer. Music programming languages are used
by a minority of these modern computer musicians; even
when users have familiarity with both types of environ-
ments, they are seen as independent and worked with sep-
arately. Existing ways of integrating text based sound pro-
gramming and DAWs are complicated and unsatisfactory.

In order to bridge these two fields, we have created a tool
called ChucK Racks. ChucK Racks provides an oppor-
tunity for electronic musicians who are familiar with the
workflow of a DAW to explore the deep possibilities of
music coding, and vice versa. ChucK Racks comes in the
form of an audio plugin in Steinberg’s Virtual Studio Tech-
nology (VST) format and Apple’s Audio Unit format, in-
tended to be used inside of a DAW. It can be used to make,
load, edit, and run programs made in the ChucK program-
ming language inside one of the hosts audio channels. It
provides numerous methods to interface ChucK with the
DAW host, including receiving timing information, send-
ing and receiving MIDI messages, and automation of in-
ternal parameters. In addition to generating sound, it can

Copyright: ©2016 Jordan Hochenbaum et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

also be used as an audio effect to process sounds coming
from the host, and to programmatically process or generate
MIDI control information.

2. RELATED WORK

ChucK Racks draws upon a number of systems for work-
ing with the ChucK programming language [1], including
the miniAudicle [2], a graphical user interface for editing,
executing, and performing with ChucK code. The Faust
programming language allows for developed audio pro-
cessing code in a functional programming language and
compiling to audio plugin formats such as VST or Audio
Unit, as well as other backend targets [3].

Max for Live is an environment for developing virtual in-
struments, effects, and generators in the Max programming
language, for use in the Ableton Live digital audio work-
station. Native Instruments’ Reaktor enables the creation
of standalone audio processing and synthesis programs us-
ing a modular patching interface; these programs can also
be imported as plugins for use in a digital audio worksta-
tion. 1 Jules’ Utility Class Extensions (JUCE) is a C++
framework for writing audio applications supporting di-
verse platforms such as VST, Audio Unit, stand-alone, and
others. 2

Audacity [4], an audio editing software application, con-
tains an embedded interpreter for the Nyquist program-
ming language [5] for customized processing of audio sam-
ples. Cecilia is an audio production environment incorpo-
rating processing based on the Csound programming lan-
guage [6]. Programming systems such as Overtone [7], ixi
lang [8], Gibber [9], TidalCycles [10], and Sonic Pi [11]
are oriented towards live coding of music during a perfor-
mance, with explicit support for mainstream and popular
genres such as dance or electronic music.

3. MOTIVATION

Digital audio workstations have made computer-based mu-
sic production techniques accessible to a vast number of
music professionals. Using DAWs like Ableton Live or
FL Studio and their complements of software plugins, it
is possible to produce, mix, and master an entire album.
Computer music programming tools such as Max/MSP or
ChucK have also expanded the sonic palette available within
a single consumer-grade computer, to a more limited audi-
ence. These software systems merge the worlds of algo-

1 https://www.native-instruments.com/en/
products/komplete/synths/reaktor-6/

2 https://www.juce.com/

mailto:jhochenbaum@calarts.edu
mailto:salazar@calarts.edu
mailto:rodrigosena@alum.calarts.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.native-instruments.com/en/products/komplete/synths/reaktor-6/
https://www.native-instruments.com/en/products/komplete/synths/reaktor-6/
https://www.juce.com/

rithms, process, sound design, and music composition for
those who can invest in learning the intricacies of computer
programming.

The DAW world and the music programming world both
afford distinct advantages to the computer musician. DAWs
give precise control and visualization of sequential events
with respect to time, such as laying out a polyphonic mu-
sical progression or rhythm. The commercially-oriented
DAW ecosystem has fostered a vibrant marketplace for au-
dio plugins, including models of well-known studio hard-
ware, advanced software synthesizers, and sophisticated
effects processors. Music programming, developed largely
from the academic and avant-garde spaces, offers advanced
capabilities for encoding musical process, allowing sophis-
ticated developments in rhythm, pitch, scales, tuning, and
timbre. Music programming also allows for the automated
generation of these parameters, wherein a software process
chooses control parameters according to an algorithm or a
set of rules, or within the constraints of an existing genre.

The workflows of DAW-based and programmatic music
making have largely remained segregated, aside from in-
stances mentioned in Section 2. The introduction of Max
for Live has bridged this gap to a significant degree, ex-
panding the role of graphical music programming in Able-
ton Live and enabling new musical possibilities even for
non-programmers. ChucK Racks is intended to bring these
two worlds together in the context of textual programming
in ChucK, and for any DAW. By integrating music pro-
gramming with ChucK into a DAW, ChucK Racks enables
procedural generation and processing of musical control
information and the development of novel audio synthe-
sis and processing techniques in the context of computer
music production. Furthermore, the ChucK Racks inter-
face is built around a text editor for ChucK code, allow-
ing musicians and programmers to quickly sketch out ideas
in code within an existing music production environment.
One of the most powerful features of many DAWs is au-
tomation, the ability to specify and hand-tune changes in
a musical property over time. Introducing these capabili-
ties into a text-based music programming environment al-
lows for controlling time-varying parameters that might be
cumbersome or over-complicated to express in code. The
ability to easily lay out melodies and rhythmic patterns
in a DAW could allow for efficient experimentation with
synthesis and sound design in ChucK. As well, combin-
ing text programming techniques with commercial-grade
audio plugins might yield improvements to overall sound
quality of text-based programming compositions.

4. DESIGN AND IMPLEMENTATION

ChucK Racks includes a light-weight integrated develop-
ment environment (IDE) that makes it possible to create,
modify, or otherwise play with ChucK programs on-the-
fly. This makes real-time interaction with ChucK possible
in a number of musical contexts from initial ideation, ex-
perimentation, composition, arrangement, mixing, and live
performance. The remainder of this section describes the
general layout and design of the ChucK Racks, as well as
it’s key features and capabilities.

The ChucK Racks plugin user interface is divided into
three primary areas: (a) the main toolbar; (b) the editor;

Figure 1. Main ChucK Rack User Interface

and (c) the console (see Figure 1). A fourth area for pa-
rameter mapping and automation will be discussed late in
section 4.4.

4.1 The Main Toolbar

One of the strengths of the ChucK language is the ability
to run many concurrent processes called “shreds”. Con-
currency in ChucK is also ‘sample-synchronous’, mean-
ing that inter-process audio timing is guaranteed to be pre-
cise down to the sample. This enables all code across all
code editor tabs to be added or removed at exactly the same
time.

The main toolbar (see Figure 1a) includes the basic func-
tionality needed to do just that. The Add All button (‘+’
icon), simultaneously adds/runs all ChucK code present in
the plugin. The Remove All button (‘x’ icon), removes
all shreds running in the VM. The Add All button can be
triggered as many times and whenever it is desired, allow-
ing for the same program to be executed concurrently with
previous instances. Additionally, through the PluginHost
interface described later in section 4.5.1, users can config-
ure their ChucK programs to synchronize execution with
the plugin host’s tempo and play position. This is useful,
for example, to ensure that code is always added on the
nearest 1/16th note, the nearest bar, or some other beat-
division of the main host tempo. Lastly, the “New Docu-
ment” icon allows the user to add as many concurrent tabs
(ChucK programs) to the project as needed. Being able to
add independent tabs allows one to quickly iterate on ideas
and variations, and to facilitate this type of sketching and
experimentation, tabs can be both duplicated and removed.
The content in each tab can be quickly saved and recalled
later from standard ChucK .ck files - this is useful not just
for writing finished works, but also building blocks that
can be re-used, recycled, and re-imagined in future works
or performances.

4.2 The Editor

ChucK Racks can have multiple tabs where ChucK files
are created, opened, or edited. Each tab includes a code
editor (see Figure 1b) equipped with syntax highlighting
for the entire ChucK and ChucK Racks APIs. In addition
to it’s primary code editing area, each tab contains an Add
button that enables it’s code to be added to the VM concur-
rently, but independently, of the code in other tabs.

4.3 The Console

The console area (Figure 2) can be expanded up from the
bottom of the plugin window and enables all ChucK error
messages or warnings from the VM to be displayed. The
console can also used for debugging, as all print statements
encountered in the running programs are displayed.

Figure 2. Debugging in the Console

4.4 Parameter Mapping and Automation

An advantage of working with a DAW and compatible plu-
gins is the possibility for the plugin to expose the values
of some internal parameters. The DAW can typically ac-
cess those parameters and allow the artist to control them
by either mapping them to a MIDI controller, or draw-
ing/recording in the parameter’s changes in an automation
lane.

A novel way of interacting with custom parameters was
developed in ChucK Racks, opening up a powerful tech-
nique to control variables in the ChucK program(s) in real-
time. Since automation follows the DAWs tempo and can
be quantized to various beat-divisions of the arrangement,
achieving time or beat synced modulations, and other mu-
sical automation effects, is extremely easy. Figure 3 shows
an example of automation drawn and quantized on a 1/16th
note grid.

This functionality can also be used to modify the program
over the duration of an entire composition, making it pos-
sible to finally integrate ChucK programs in the context
of a through-composed composition, or any other context
where written and fixed automation changes are needed.
There are many other possibilities as well, e.g. performers
using DAWs like Ableton Live and Bitwig can store pre-
defined automation curves in MIDI clips, which they can
then use to trigger parameter automation gestures in the
ChucK programs on-the-fly when performing live.

Figure 3. Automation on a 1/16th grid timeline in Ableton Live

Adding new parameters can be done through the Param-
eter Panel (Figure 4), which can be expanded/collapsed
via an arrow on the right-hand side of the screen. All
parameters added to a plugin instance are automatically
saved and recalled with the DAW project. New parame-
ters can be added and named, and their values mapped to
the host, simply by enabling the host’s mapping function,
right-clicking on the parameter, and selecting ‘map’. Natu-
rally, because most hosts can map plugin parameters from
an audio plugin to a MIDI controller, it is thus possible,

without writing any additional code, to map a MIDI con-
troller directly to variables within the code, and recall those
mappings with the project.

Figure 4. Mapping Automatable Plugin Parameters to the Host

4.4.1 Accesing Parameter Values in Code

A new extension called PluginParameters was added to
ChucK to access user defined plugin parameters. Calling
the PluginParameter::getValue() function from anywhere
in the ChucK code, retrieves the current value of param as
a floating point number between 0.0 and 1.0.
PluginParameters.getValue("volume") => osc.gain;

Listing 1. Mapping Parameter called volume to oscilattor
gain in ChucK

Listing 1 shows how to map a plugin parameter called
volume to the gain of an oscillator called osc. Further scal-
ing the normalized values provided by PluginParameters
to some other desired range is straightforward. Listing 2
shows an example of mapping a parameter called cutoff to
the cutoff frequency of a lowpass filter called filter. The
parameter’s value is first skewed exponentially, before fi-
nally converting it’s range to be between 50 and 10000.
//values from plugin parameters are between 0 and 1
PluginParameters.getValue("cutoff") => float valueFromParam;

//since it’s for frequency we want an exponential response
valueFromParam * valueFromParam => float expValue;

//scale to desired range of the filter (in Hz)
Std.scalef(expValue, 0.0, 1.0, 50.0, 10000.0) => filter.freq

Listing 2. Scaling a parameter’s value to another range

The above examples demonstrate how to query the value
of a plugin parameter instantaneously, however, it is of-
ten the case that a variable should be updated continu-
ously, outside of the current code block in ChucK. List-
ing 3 defines a poller function in ChucK called updateVol-
ume(), which runs infinitely, and updates an oscillator’s
gain with the plugin’s volume parameter every 10ms. This
is achieved using spork, a ChucK language construct which
allows a function call to be dynamically added to the vir-
tual machine and run in its own concurrent shred (see 4.1
for a brief overview of shreds). Note, because ChucK gives
the user complete control of time, it is up to the user to de-
cide what rate to update the value at. In this example, the

authors chose to update the value every 10ms, but ChucK
supports as low as subsample rates, and other durations
such as milliseconds, seconds, minutes, hours, days, and
weeks. Furthermore, as ChucK supports the definition of
custom durations, it is possible to make the polling rate a
function of host’s tempo (accessing the host’s tempo will
be discussed later in section 4.5.1)
spork ~ updateVolume();

fun void updateVolume(){
while(true) {

PluginParameters.getValue("volume") => osc.gain;
10::ms => now;

}
}

Listing 3. Updating Plugin Parameters Continuously

Additionally, parameters are created at the plugin level
and are thus accessible (and can be mapped) across one or
more code files. This allows for typical one-to-one map-
pings (e.g. a plugin parameter called cutoff which is mapped
to the cutoff frequency of a filter on a synthesizer) but
also one-to-many mappings. These ‘macro’ parameters
can thus control many disparate variables across multiple
ChucK programs simultaneously, from a single automa-
tion lane or MIDI controller input. Of course, their values
can be skewed in the code where they are mapped to make
non-linear relationships across the mappings.

4.5 Sharing Information Between ChucK and the
Host

Section 4.4 described some of the extensions necessary to
be able to map plugin parameters between the host and
code running in ChucK Racks. The remainder of this sec-
tion will describe a number of extensions that facilitate the
exchange of information including host information such
as transport state and tempo synchronization, as well as
audio, and MIDI.

4.5.1 PluginHost API

A challenge users face when trying to integrate ChucK
with other software is the sharing of critical timing infor-
mation, like tempo, between the two. The PluginHost API
was added to ChucK to make this easier, and to give the
user direct access to host information and events.

Firstly, a number of static methods to communicate use-
ful information to/from the host can be called on-demand,
from code in ChucK Racks. Table 1 provides an overview
of the API. Using these functions, it is possible to get the
host’s tempo and time signature, to query if the transport
is playing or stopped, and if playing, the current play po-
sition, the position in the current beat, the position in the
current bar, as well as the start position of the last (current)
bar. Using these functons, a ChucK programmer has the
ability to make most timing calculations they might need
to control their musical works. Furthermore, a number of
convenience functions were added to obtain common note
durations based on the host tempo as ChucK dur objects
(ChucK’s unit of time). Lastly, a function was also created
to send MIDI out of ChucK Racks, and will be described
later in section 4.5.3.

As detailed in Table 2, a number of ChucK event call-
backs have also been added to the PluginHost API to syn-
chronize ChucK to the host. This includes being notified

Table 1. Overview of PluginHost Functions
Function Info

float getTempo () Returns the current tempo in Beats-Per-Minute
int timeSigUpper() Returns the number of beats in a bar (3 in 3/4)
int timeSigLower() Returns the note value of one beat (the beat unit, 4 in 3/4)
int isPlaying () Returns 1 is host is currently playing, 0 if it is stopped
float pos() Returns play position (in quarter notes)
float posInBeat() Returns play position in current beat between 0.0 and 0.9999
float posInBar() Returns play position in current bar between 0 and number of

quarter notes in time-signature (e.g 0.0 - 3.999 in 4/4)
float posLastBarStart() Returns start position of the last bar in quarter notes
dur barDur() Returns the length of a bar
dur halfDur() Returns the length of a half note
dur quarterDur() Returns the length of a quarter note
dur eighthDur() Returns the length of a eighth note
dur sixteenthDur() Returns the length of a sixteenth note
void sendMidi (MidiMsg msg) Sends a midi message msg

on play and stop events from the host’s transport, incoming
midi messages from the host’s sequencer or midi track in-
put, as well when common beat divisions are passed (e.g.
the down beat of the next bar, or the next sixteenth note).

Table 2. Overview of PluginHost Events
Event Info

onPlay () Triggered when host transport starts playing
onStop () Triggered when host transport stops playing
onMidi () Triggered when new midi event is available
int PluginHost.recvMidi(MidiMsg msg) Triggered when midi messages are received from host

Returns 1 if message was received.
nextBar() Triggered on the start of the next bar
nextHalf() Triggered on the next half note
nextQuarter () Triggered on the next quarter note
nextEighth () Triggered on the next eighth note
nextSixteenth () Triggered on the next sixteenth note

4.5.2 Audio Input, Output, and Processing

Audio can be streamed in and out from ChucK Racks us-
ing ChucK’s audio signal graph. Typically the adc unit
generator (UGen) in a ChucK program represents an input
device such as a microphone, and the dac UGen represents
the underlying audio cards output. ChucK Racks takes ad-
vantage of this system and uses the adc UGen for the audio
coming into the plugin from the host, and the dac UGen is
simply the plugin’s main output buffer. In doing so, code
running in ChucK Racks can serve as either an audio effect
or virtual instrument (synthesizer) plugin, and be portable
from standard ChucK to ChucK Racks.

adc => LPF filter => dac;

Listing 4. A Simple Low-pass Filter Audio Effect in
ChucK Racks

Listing 4 demonstrates a simple audio effect plugin in
ChucK Racks, where incoming audio is processed through
ChucK’s low-pass filter UGen. It should be noted that
ChucK’s audio graph allows multiple unit generators to be
chained together in between the adc and dac, and so a sin-
gle instance of ChucK Racks, placed inline as an audio
effect on a DAW track, can actually be an arbitrarily com-
plex chain of audio processors. The rest of the program
controls how those processors then shape the sound, either
programmatically, algorithmically, or through other means
like automation and real-time user input. ChucK includes
a number of built-in classes for audio synthesis, process-
ing, and analysis, with several mechanisms to create cus-
tom sample-rate synthesizers and processors [12].

4.5.3 MIDI Processing

It is essential that ChucK Racks provides bi-directional
MIDI message handling with the host. By receiving MIDI
note and Control Change (CC) information, custom syn-
thesizers and samplers can be created in ChucK Racks,
and used like any other virtual instrument plugin. This
enables the user to sequence and arrange their ChucK vir-
tual instrument using the DAW’s sequencer, arrangement,
and score editors. The ability to send MIDI out of ChucK
Racks allows programmers and artists to take full advan-
tage of ChucK’s strong timing facilities to build novel se-
quencers to control other audio plugins. Combining both
MIDI input and output, it is also possible to build real-time
MIDI effects, like arpeggiators, scale quantizers, chord gen-
erators, and more. In this way, ChucK racks can become a
modular environment for virtual instruments. The remain-
der of this section will describe in greater detail how MIDI
information is communicated between ChucK Racks and
the host.

ChucK Racks works alongside ChucK’s existing MIDI
messaging and event classes, and adds new methods to
PluginHost: onMidi(), sendMidi(), and recvMidi(). Listing
5 responds to MIDI messages from the host, by waiting
on the PluginHost.onMidi() event, and then unpacking the
incoming MIDI message into a regular ChucK MidiMsg
object.
MidiMsg msg;

while(true) {
PluginHost.onMidi() => now;
while(PluginHost.recvMidi(msg)) {

<<< msg.data1, msg.data2, msg.data3 >>>;
}

}

Listing 5. Receiving and Unpacking MIDI from Host

Sending MIDI out from ChucK Racks is also straightfor-
ward. Listing 6 sends MIDI out of ChucK Racks using
ChucK’s standard MidiMsg object.
while(true) {

MidiMsg msg;
0x90 => msg.data1;
60 => msg.data2;
127 => msg.data3;
PluginHost.sendMidi(msg);
1::second => now;

}

Listing 6. Sending MIDI to Host

4.6 libchuck

ChucK Racks integrates a ChucK compiler and virtual ma-
chine in the form of libchuck, a C++ library version of
ChucK designed to be embedded into larger applications. 3

libchuck provides functionality for compiling code, report-
ing code errors, and running or removing code from the
virtual machine. Through libchuck, ChucK’s vm can be
executed in conjunction with an existing real-time audio
engine, such as that of a DAW, by requesting the desired
number of samples from libchuck. libchuck also allows a
host application to load customized chugins[12] to extend
the default functionality of ChucK with new unit genera-
tors and classes that can interact with the host in sophisti-
cated ways. For instance, this allows ChucK Racks to set

3 Available at https://github.com/spencersalazar/
libchuck

up the PluginHost and PluginParameters classes for inter-
facing with the host DAW environment.

5. EXAMPLES

5.1 Quantized Musical Phrase Launching

This example (Listing 7) shows how to quantize a musi-
cal section using the PluginHost API event callbacks and
durations. Each bar, the function measure is executed in
it’s own shred. measure() generates a random note value
within a 2-octave range and assigns the result to the fre-
quency of sine oscillator s. The note plays for exactly 1
quarter note using PluginHost.quarterDur(), and this is re-
peated four times to complete the measure.
SinOsc s => dac;

fun void measure() {
for (0 => int i; i < 4; i++) {

Std.mtof(Math.random2(60,84)) => s.freq;
PluginHost.quarterDur() => now;

}
}

while (true) {
PluginHost.nextBar() => now;
spork ~ measure();

}

Listing 7. Quantized Musical Phrase Launching

5.2 Sequenced Low-pass Filter

This audio effect processes the DAW’s audio through ChucK’s
low-pass filter. A 16-step sequence of filter “cutoff” values
is randomly generated, and the sequence is applied sequen-
tially to the filter, in sync with 1/16th notes from the host.
The cutoff value is multipled by a master cutoff PluginPa-
rameter, which the user can automate in the host, or map
to a midi controller to scale the values of the cutoff modu-
lation in real-time.
adc => LPF lpf => dac;

16 => int numberOfSteps;
float sequence[numberOfSteps];

for (int i; i<numberOfSteps; i++) {
Math.randomf() => sequence[i];

}

while(true) {
for(int i; i<numberOfSteps; i++) {

sequence[i] => float value;
PluginParameters.getValue("cutoff") *=> value;
value*value => value;
Std.scalef(value, 0.0, 1.0, 50.0, 10000.0) => lpf.freq;

PluginHost.nextSixteenth() => now;
}

}

Listing 8. Sequenced Low-pass Filter

5.3 Quantized Cellular Automata

ChucK Racks bridges the gap between algorithmic compo-
sition in ChucK and through-composed pieces in a DAW.
In Listing 9, a simple celluar automata based sequencer
generates pentatonic notes which are sent out of the plugin
to another software instrument or sampler. The events are
quantized to sixteenth notes in the DAW, to keep the events
in time with the rest of the composition. It is also possible
to extend this example, by automating parameters of the al-
gorithmic system, allowing the composer to influence the
system over time.

https://github.com/spencersalazar/libchuck
https://github.com/spencersalazar/libchuck

// Cellular Automata rule
110 => int rule;
12 => int rhythmLength;

// Cellular Automata binary input
1 => int input;
[0, 2, 4, 7, 9, 12, 14, 16, 19, 21, 24, 26] @=> int

pentatonicScale[];

while (true) {
int output, lookup, state;
for (0 => int i; i < rhythmLength; i++) {

// Cellular Automata bit math logic
if (i == 0)

(input >> rhythmLength - 1) | ((input & 3) << 1) =>
lookup;

else if (i == (rhythmLength - 1))
((input >> i) & 3) | ((input & 1) << 2) => lookup;

else
(input >> (i - 1)) & 7 => lookup;

// Cellular Automata bit math results
(rule >> lookup) & 1 => state;
(state << i) | output => output;

if (state == 1) {
MidiMsg msg;
0x90 => msg.data1;
48 + pentatonicScale[i] => msg.data2;
Math.random2(80, 127) => msg.data3;
PluginHost.sendMidi(msg);

}

PluginHost.nextSixteenth() => now;
}

output => input;
}

Listing 9. Cellular Automata Quantized to Sixteenth Notes

5.4 Automatable Wavefolder Distortion

This DSP audio effect applies a custom wavefold distortion
Chugen to the incoming audio. The wavefolder’s threshold
can be automated through a PluginParameter.
class Wavefolder extends Chugen {

0.1 => float threshold;

fun float tick(float in) {
if (in > threshold)

threshold - (in - threshold) => in;
else if (in < -threshold)

-threshold + (-threshold - in) => in;
return in;

}
}

adc => Wavefolder myWavefolder => dac;

while(true) {
PluginParameters.getValue("foldingThreshold") => float val;
Std.dbtolin(Std.scalef(val, 0, 1, -80, 0)) => float amnt;
amnt => myWavefolder.threshold;
10::ms=>now;

}

Listing 10. Automatable Wavefolder Distortion Effect

6. CONCLUSIONS

While many artists have familiarity working with DAWs,
music programming languages, or both, they are often seen
as independent due to the challenges in combining the two
effectively. Yet both have unique affordances that musi-
cians and composers take advantage of. We have devel-
oped a VST/Audio Unit plugin, ChucK Racks, that lever-
ages the strengths of both, by combining the flexibility of
computer music software programming with the workflow
of a DAW. ChucK Racks contains a number of unique fea-
tures that make it effective in a wide range of musical con-
texts, fulfilling our goals of unifying the workflows of mu-
sic coding and DAWs and shortening the path between it-
erating on musical ideas and iterating on code.

ChucK Racks is currently available in source code form
and will be made available as a binary release at: http://
mtiid.calarts.edu/projects/software/chuck-racks/

Acknowledgments

The authors wish to thanks Eric Heep and Jake Penn for
their code contributions to the ChucK Racks project.

7. REFERENCES

[1] G. Wang, P. R. Cook, and S. Salazar, “ChucK: A
Strongly Timed Computer Music Language,” Com-
puter Music Journal, 2016.

[2] S. Salazar, G. Wang, and P. Cook, “miniAudicle and
ChucK Shell: New interfaces for ChucK development
and performance,” in Proceedings of the International
Computer Music Conference, 2006, pp. 63–66.

[3] Y. Orlarey, D. Fober, and S. Letz, “FAUST: an efficient
functional approach to DSP programming,” New Com-
putational Paradigms for Computer Music, 2009.

[4] D. Mazzoni and R. B. Dannenberg, “A fast data struc-
ture for disk-based audio editing,” Computer Music
Journal, vol. 26, no. 2, pp. 62–76, 2002.

[5] R. Dannenberg, “The Nyquist Composition Environ-
ment: Supporting Textual Programming with a Task
Oriented User Interface,” in Proceedings of the Inter-
national Computer Music Conference, 2008.

[6] J. Piché and A. Burton, “Cecilia: A production inter-
face to Csound,” Computer Music Journal, vol. 22,
no. 2, pp. 52–55, 1998.

[7] S. Aaron and A. F. Blackwell, “From sonic Pi to
overtone: creative musical experiences with domain-
specific and functional languages,” in Proceedings of
the first ACM SIGPLAN workshop on Functional art,
music, modeling & design. ACM, 2013, pp. 35–46.

[8] T. Magnusson, “ixi lang: a SuperCollider parasite for
live coding,” in Proceedings of International Computer
Music Conference. University of Huddersfield, 2011,
pp. 503–506.

[9] C. Roberts and J. Kuchera-Morin, “Gibber: Live cod-
ing audio in the browser,” in Proceedings of the Inter-
national Computer Music Conference, 2012.

[10] A. McLean, “Making programming languages to dance
to: live coding with Tidal,” in Proceedings of the 2nd
ACM SIGPLAN international workshop on Functional
art, music, modeling & design. ACM, 2014, pp. 63–
70.

[11] S. Aaron, “Sonic Pi–performance in education, tech-
nology and art,” International Journal of Performance
Arts and Digital Media, vol. 12, no. 2, pp. 171–178,
2016.

[12] S. Salazar and G. Wang, “Chugens, Chubgraphs, Chu-
gins: 3 Tiers for Extending Chuck,” in Proceedings
of the 38th International Computer Music Conference,
2012.

http://mtiid.calarts.edu/projects/software/chuck-racks/
http://mtiid.calarts.edu/projects/software/chuck-racks/

	 1. Introduction
	 2. Related Work
	 3. Motivation
	 4. Design and Implementation
	4.1 The Main Toolbar
	4.2 The Editor
	4.3 The Console
	4.4 Parameter Mapping and Automation
	4.4.1 Accesing Parameter Values in Code

	4.5 Sharing Information Between ChucK and the Host
	4.5.1 PluginHost API
	4.5.2 Audio Input, Output, and Processing
	4.5.3 MIDI Processing

	4.6 libchuck

	 5. Examples
	5.1 Quantized Musical Phrase Launching
	5.2 Sequenced Low-pass Filter
	5.3 Quantized Cellular Automata
	5.4 Automatable Wavefolder Distortion

	 6. Conclusions
	 7. References

