
M N M L G R A N U L A R &
U N S U P E R V I S E D S Y N T H E S I S

P R O G R A M M I N G

Jacob Penn - BFA Music Technology

�2

A c k n o w l e d g m e n t s

Thank you to the entire MTIID faculty for inspiring and challenging the way I
think and interact with the world.

Submitted to:

Ajay Kapur

Jordan Hochenbaum

Owen Vallis

Spencer Salazar

Parag Mital

Special thanks to:

My friends and family for all the support.

Nathan Shaw and my CalArts classmates for being so open to sharing your
knowledge.

Curtis Roads & Ross Bencina for their detailed work on granular synthesis.

�3

A b s t r a c t
Key topics: C++, Granular Synthesis, Digital Signal Processing, Machine
Learning, Custom GUIs

Currently, digital audio systems require the manual tuning of hundreds of
various parameters in order to achieve a target sound. This paper proposes a
method to automate this process through the unsupervised programming of
MNML Granular, a cross platform VST/AU plugin which delivers users a
unique interface for the pitch-shifting, time-stretching, and rhythmic
chopping of real time signals. Granular processing provides many interesting
types of synthesis through it’s ability to separate the pitch and time domains.
This paper offers insight into the structures of granular engines, as well as
potential strategies and improvements for real time granular processing.

�4

C o n t e n t s
Introduction…………………………………………………………………………5

Granular Synthesis Background………………………………………..5
Machine Learning and Synthesis………………………………………6

Review……………………………………………………………………………….7
 Granular Synthesis - Related Work……….…………..………………..7

 Granulator II by Monolake……………………….……….……..7
 Grain Stretch by FlipMu……….………………….……………..7

Methods - Granular………………………………………………………………..8
 Overview………………………………………………..………………..8
 Circular Buffers…………….…………………………..………………..8
 Grains……………………….…………………………………………..10
 Scheduler……………………….……….……………………………..12
 Granulator.……………..……….……….……………………………..12
 Rhythmic Tempo Syncing.……………..……….……..……………...16
 User Interface…………..………………..……….……..……………..17
 Conclusion of Granular Methods……..……….……..……………..17
Methods - Machine Learning……………..………………………………..…..18
 Overview………………………………………………..…….………..18
 Data Acquisition..…….………………………………..…….………..18
 Error Calculation..…….…..….………………………..…….………..20
 Parameter Optimization..…….…..…………………..……..………..21
 Gradient Descent………….….…..…………………..……..………..22
 Conclusion of Machine Learning Methods…….….……..………..22
Results - Granular….…..…………….……..………………………………..…..23
Results - Machine Learning….……..……..………………………………..…..24
 Single Parameter…………..…………………………..…….………..24
 Multiple Parameters………….………………………..…….………..25
Conclusions…………………………..……..………………………………..…..26
References..…………………………..……..………………………………..…..27

�5

I n t r o d u c t i o n
Granular Synthesis - Background

 Granular synthesis is a common digital signal processing technique
which consists of the decomposition of an audio signal into small wavelets.
This fine control of wavelets allows for the separation of pitch and time.
Previous to granular synthesis the time and frequency domains were
intrinsically connected for audio engineers, but with the speed of modern
day computing and the strength of granular synthesis and filtration, any
studio with a modern household computer can utilize these techniques.
Although there is a multitude of granular synthesis systems on the market
(e.g. Camel Audio, Ableton Live, Twisted Tools, Audio Mulch) there is room
for individuality and customization in building a granular engine from
scratch. All granular engines require the manual tuning of many parameters
which will be exposed to the user, this paper proposes a method of granular
processing focused on the manipulation of real time signal.

 The history of granular techniques stem from scientific and
philosophical thinking. Atomism: a doctrine that the physical and mental
universe is composed of simple indivisible minute particles.[1] Atomism has
been attributed as the root of granular thinking by granular pioneer Curtis
Roads, in his paper Evolution of Granular Synthesis. He also states, “The
modern concept of sound particles can be traced to Einstein’s phonons,
which he predicted in 1907. But the phonons consist of inaudible packets of
ultrasonic energy at feeble amplitudes. It was Einstein’s pupil, Dennis Gabor,
who in the 1940’s had the fundamental insight that brought the particle
model into the domain of perceived sound. The composer Iannis Xenakis
learned of Gabor’s experiments, and in 1959, he made an experiment in
which he approximated granular synthesis by means of tape splicing.”[2]

 Iannis Xenakis was a Greek-French composer who helped
revolutionize music after World War II. He is known for his pioneering
approach to composition which included the fusion of mathematical
processes with 20th century classical music. Although Xenakis rejected
serialism, he contributed to this crucial period in musical development.[3]

�6

Post World War II, composers were unable to understand what had
happened in society, disgusted, they devised a radically new system for
music composition based on using all twelve notes of the keyboard, the
twelve tone matrix, which served as a scientific path to sonically interesting
and pleasing results. Xenakis’ approach differed from that of his fellow
composers, as he rejected the twelve tone matrix and used the application of
mathematical models to create a seemingly random composition out of very
rigid and detailed instructions. Xenakis argued that allowing players to freely
break rules with no guide wouldn’t open a door to a new world, but instead
limit performers to either fall back to their comfort zone, or alternatively to
the polar opposite of the intuition. He created the first granular music
composition by splicing many bits and pieces of tape string recordings in his
pieces Analogique A-B in1958-1959.

 The approach Xenakis used for granular synthesis, although very
sonically interesting, proved to be too tedious and difficult for deep
investigation. It wasn’t until computers gained enough power to design
digital granular systems that granular synthesis gained traction. Curtis Roads,
a composer, computer programmer, and CalArts alum, is attributed to
designing the first digital granular synthesis engine. Inspired by Xenakis, he
built his first granular system in the 1970s and has continued to lay the
ground work for other composers and engineers to explore granular
synthesis.

Machine Learning & Synthesis - Background

 “Machine learning is programming computers to optimize
performance criterion using example data or past experience. We have a
model defined up to some parameters, and learning is the execution of a
computer program to optimize the parameters of the model using the
training data or past experience. The model may be predictive to make
predictions in the future, or descriptive to gain knowledge from data, or
both.”[4]

 Machine learning is a topic of great importance in computer
science, and one whose importance will continue to grow with the
complexity surrounding digital systems and data. In digital audio synthesis,
sounds are sculpted and generated through the manual setting of hundreds
of possible parameters. Although there is an incredible amount of fine detail

�7

which is available to the user, the creation of novel sounds quickly becomes a
daunting task which requires deep consideration and expertise. Machine
learning has the potential to aid composers through the synthesis process by
very quickly changing and testing parameters in order to create target audio.

R e v i e w
Granular Synthesis - Related Work

 Non-Real Time - Granulator I I by Monolake

 Granulator II by Monolake (Fig. 1) is a quintessential example of the
strengths of non-real time granular synthesis. It delivers users with what is
referred to as asynchronous granular processing, a common approach within
granular synthesis environments. A possible output of an asynchronous
granular system is an audio stream with inconsistent amplitude. (Fig. 2)

 In this application, an audio file is loaded into the granular system to
serve as the audio source in synthesis programming, the asynchronous
system then plays wavelets from the source audio in user constrained
irregular intervals, from many grains simultaneously. This type of granulation
creates new sonic textures far from the original source material. As opposed
to synchronous granular systems, asynchronous is a common approach in
systems where sound synthesis is the goal. Because of the frequent use of
granulation in this type of system, granular processing has become
commonly referred to as granular synthesis. The granular source material has
replaced the need of oscillators in the synthesis environment. In real time
systems it is possible to refer to wavelet decomposition of sound as granular
processing as opposed to granular synthesis.

Real Time - Grain Stretch by Fl ipMu

 Grain Stretch by FlipMu (Fig. 3), on the other hand, is the perfect
example of real time granular processing. This system delivers a synchronous
granular stream (Fig. 4), which allows users to separate the pitch and time
domains of real time signal. This is achieved by the granular systems ability to
recreate audio signal from multiple playback sources simultaneously. Audio
is streamed into the system, which delivers wavelet decomposition of the
signal, and a user definable schema to re-synthesize the audio.

Fig. 1
Granulator II by Mono-lake

Fig. 3
Grain Stretch by FlipMu

Fig. 2
Asynchronous Granulation

�8

 Most people are aware of the connection of the time and frequency
domains through the use of record players. If a record is played back faster
than it’s intended speed, the pitch of the signal is raised, alternatively, if the
record is played back slower, the pitch is lowered. Granular systems use this
to their advantage by overlapping windowed versions of the signal in a
manner which simultaneously raises or lowers the pitch, while keeping the
time domain of the signal intact.

 As you can see in the granular transposition on the right (Fig. 5), the
time domain has remained intact to the original signal. This is because of the
granular processing system’s ability to overlap multiple transposed grains. In
the transposed signal, transposed grains are played throughout the buffer of
the original audio signal, overlapping and repeating pieces of audio to
preserve the time domain.

M e t h o d s - G r a n u l a r
Overview

 The signal flow of a granular system requires four main pieces, a
circular buffer for holding audio data from an input, a group of grains for
retrieving audio data from the buffer, a granulator object for synthesizing
audio from the grains, and a scheduler which triggers the granulators
queries. First, audio is streamed into the system and into the buffer. Next,
according the settings provided by the user, the scheduler and granulator
drive the system, sending queries and synthesizing audio for the output.

Circular Buffers
 The beginning of the project starts with the creation of a circular
buffer to hold real time audio data. Circular buffers are common in digital
audio applications, as they serve as the basis for many time based audio
effects (e.g. Vibrato, Flanger, Chorus, Delay). A block of computer memory is
pre allocated to allow the simultaneous writing and reading of audio data in
the program. Because in MNML Granular there is no responsibility of the
circular buffer to do anything except hold audio data, the circular buffer is
quite simple, with no read heads. (Fig. 7) A pointer float array is dynamically
allocated to allow variable delay line lengths, and the process function
operates at sample rate to write into the circular buffer. (Fig. 8)

Fig. 4
Synchronous Granulation

Fig. 5
Granular Transposition

Fig. 6
Granular Structure

�9

 Before playback, the pBuffer is preallocated and the memset
function is called to initialize all it’s values to zero. (Fig. 9) On playback each
sample of audio is written into a new position in the circular buffer, if the
write index of the buffer reaches the end of the available space in memory,
the write index is reset to zero and the buffer begins to rewrite over previous
audio data. In the granular system, the length of the delay line is important to
the time stretching effect on the audio. If time stretching is applied for a
period longer than the buffer length, the effect will be disrupted by a
discontinuity due to the input of the circular buffer overwriting the desired
audio data of the time stretch.

class GranularBuffer {
public:
 GranularBuffer();
 ~GranularBuffer();
 void setBufferLength(float sampleRate, float seconds);
 int getBufferLength();
 int getWriteIndex();
 void prepareToPlay();
 void process(float input);
 float* m_pBuffer;
private:
 int m_nBufferSize;
 int m_nWriteIndex;
};

Fig. 7
GranularBuffer.h

void GranularBuffer::process(float input)
{
 m_pBuffer[m_nWriteIndex] = input;
 m_nWriteIndex++;
 if(m_nWriteIndex > m_nBufferSize)
 m_nWriteIndex = 0;
}

Fig. 8
GranularBuffer.cpp - process() function

void GranularBuffer::prepareToPlay()
{
 if (m_pBuffer)
 delete [] m_pBuffer;
 m_pBuffer = new float[m_nBufferSize];

 if (m_pBuffer)
 memset(m_pBuffer, 0, m_nBufferSize*sizeof(float));

 m_nWriteIndex = 0;
}

Fig. 9
GranularBuffer.cpp - prepareToPlay() function

�10

Grains
 At the heart of a granular processing algorithm live the grains. The
grains are responsible for generating audio data from the granular buffer
and returning this data to the granulator object upon request. In MNML
Granular, grains apply a Tukey Window function to the audio data in order to
retrieve wavelets from the granular buffer. (Fig. 10, 11)

 Notice the use of an external “playSwitch,” which controls starting
the execution of the window. (Fig. 12) The variable used for this function lives
in the grain class, and is crucial to logistical playback. The most important
function of the grains is to respond to the granular object’s query to the
granular buffer. This query involves the length of the grain, the position of the
buffer the grain is to read from, and the pitch or playback speed of the grain.
The grain object must also handle an interpolation type in order to estimate
inter sample values, as well as be able to tell the granulator object whether or
not it is currently busy generating audio data from another query. m_bBusy is
the variable which the Tukey Window uses to determine whether or not to
run through the function.

 Notice the four grainIndices, these are used to control a quadratic
interpolation of the audio signal. (Fig. 13) If playback speeds or the pitch of
the grain are raised or lowered from 1, an interpolation method must be
used in order to determine inter sample values of the audio signal. (Fig. 14)

 The play function of the grain runs at sample rate, and is responsible
for executing all the queries from the granulator object. (Fig. 15)

 First, the granular buffer is passed into the grain object. The four
points surrounding the desired sample value are indexed within the buffer
and pulled into local variables of the function. The grainIndex is determined
right before the beginning of the execution of the grain, through the init()
function. (Fig. 16)

 Pitch is a value which will determine the speed grains play through
the granular buffer, 1 is equivalent to the true pitch of the sound, while .5 is
half the frequency of the original, and 2 is double the frequency. Because this
granular processor operates on a real time signal, keeping the beginning of
the granular playback as close to the granular buffer write head is crucial.
Considerations must be made when the playback speed of the grain are
greater than one. Once the grain is aware of its playback speed, and the

float TukeyWindow::doTukeyWindow(float input, bool& playSwitch){
 if (playSwitch == true){
 if (incrementer < (timeInSamples/2)){
 multiplier = 0.5 * (1+cos(((2*PI)/timeInSamples)*(incrementer-(timeInSamples/2))));
 incrementer++;
 }
 else if (incrementer == (timeInSamples/2)){
 multiplier = 1;
 incrementer++;
 }
 else if (incrementer > (timeInSamples/2)){
 multiplier = 0.5 * (1+cos(((2*PI)/timeInSamples)*((incrementer - 1)+(timeInSamples/2))));
 incrementer++;
 }
 if (incrementer == timeInSamples){
 multiplier = 0;
 playSwitch = false;
 incrementer = 0;
 }
 return input * multiplier;
 }
}

Fig. 10
Tukey Window Equation

Fig. 11
Tukey Window Graphical Plot

Fig. 12
TukeyWindow.cpp - doTukeyWindow() function

�11

position in the buffer, it is ready to be triggered and return the signal. The
inter sample amount of the particular grain’s read head within the granular
buffer is calculated through fFracDelay = grainIndex - (int)grainIndex. The
output sample of the system is then created through the four point
interpolation of the four audio samples, using the fractional inter sample
amount to find the desired point. The grainIndex is then incremented
through the circular buffer according the “pitch” of the grain. At this point, we
have our desired output sample, however it is still at the same amplitude as
the input signal. Before returning to the granulator, the grain applies the
window function to the audio data according to the window size specified
from the granulator, and whether or not to run through the window. If
m_bBusy is false, the return will always be 0, if the granulator object sets the
grains m_bBusy = true, then the grain will start at the beginning of the
window, return windowed audio data, reset it’s state of m_bBusy to false, and
resume returning zero.

Fig. 13
Grain.h

Fig. 14
Four Point Intersample Interpolation

class Grain
{
public:
 Grain();
 ~Grain();
 void setDelta(float samples);
 void setWindowSize(int sampleRate, float seconds);
 void init(float pitch, GranularBuffer& buffer);
 bool isItBusy();
 void setGrainBusy(bool isItBusy);
 float play(int sampleRate, GranularBuffer& buffer);
 int returnIncrementer();

private:
 bool m_bBusy;

 TukeyWindow m_Window;
 float m_fDelta;
 float m_fWindowSize;

 float m_fGrainIndex;
 int m_nGrainIndex_f1;
 int m_nGrainIndex_f2;
 int m_nGrainIndex_p1;

 float m_fBufferSpeed;
};

Fig. 15
Grain.cpp - play() function

float Grain::play(int sampleRate, GranularBuffer&
buffer)
{
 float yn = buffer.m_pBuffer[point];
 float yn_f1 = buffer.m_pBuffer[f1point];
 float yn_f2 = buffer.m_pBuffer[f2point];
 float yn_p1 = buffer.m_pBuffer[p1point];

 float fFracDelay = grainIndex - (int)grainIndex;

 float output = FourPointInterpolate(yn, yn_p1,
 yn_f1, yn_f2, fFracDelay);

 grainIndex = grainIndex + bufferSpeed;

 if (grainIndex > buffer.getBufferLength())
 {
 grainIndex -= buffer.getBufferLength();
 }

 return m_Window.doTukeyWindow(output, m_bBusy);

}

Fig. 16
Grain.cpp - init() function

void Grain::init(float pitch,
GranularBuffer& buffer)
{
 bufferSpeed = pitch;
 grainIndex =
 buffer.getWriteIndex() -
 m_fDelta;
 if (grainIndex < 0)
 {
 grainIndex +=
 buffer.getBufferLength();
 }
}

�12

Scheduler
 The scheduler is completely unaware of the granular synthesis
which is occurring, and functions solely as a timer to drive granular playback
within the granulator. It’s functionality is very simple, as it essentially acts like
a sample accurate timer in the audio space. (Fig. 17)

 The setInteronset function takes in the user controlled inter-onset
rate of the grains, because this is a synchronous granular system, the inter-
onset time has no randomization and will always deliver a consistent stream
of triggers specified by the user interface. (Fig. 18) The granulator object will
drive the scheduler through it’s play function, and can query it’s state through
the bang function. (Fig. 19, 20)

 The bang function also holds the functionality to force a grain to fire,
which is later needed to drive tempo synchronous streams.

Fig. 17
GrainScheduler.h

class GrainScheduler
{
public:
 GrainScheduler();
 ~GrainScheduler();
 void setInteronset(float sampleRate, float seconds);
 void prepareToPlay();
 void play();
 bool bang();
 void forceBang();
private:
 int m_nInteronsetInSample;
 int m_nCounter;
 bool m_forceBang = false;
};

Fig. 18
GrainScheduler.cpp - setInteronset() function

void GrainScheduler::setInteronset(float sampleRate, float seconds){
 m_nInteronsetInSample = sampleRate * seconds;
}

bool GrainScheduler::bang(){
 if (m_forceBang == true)
 {
 m_forceBang = false;
 return true;
 }
 else if (m_nCounter == m_nInteronsetInSample)
 {
 return true;
 }
 else
 {
 return false;
 }
}

Fig. 20
GrainScheduler.cpp - bang() function

void GrainScheduler::play(){
 m_nCounter++;
 if (m_nCounter > m_nInteronsetInSample)
 {
 m_nCounter = 0;
 }
}

Fig. 19
GrainScheduler.cpp - play() function

�13

Granulator
 The granulator is the highest level object within the granular system.
Its responsibility is to coordinate all controls between the user UI, the grain
scheduler, the granular buffer, and the the grains themselves. In MNML
Granular the entire plugin itself is partially responsible for handling all of this
functionality, but there is a high level granulator object which abstracts the
process block of the granulation. The granulator object takes all of this data
from MNML Granular and synthesizes the output. (Fig. 21)

 First the system needs member variables of all necessary parts of
the granular system. (Fig. 22)

 Next the plugin needs to initialize all of these objects and prepare
them for playback. This happens on initialization of the system, or anytime
sample rate is changed. (Fig. 23)

 Once all of the objects are instantiated and ready for granular
playback, the processBlock method can begin to process audio data through
the granulator based on user controlled parameters. The processBlock
function takes audio samples into the system, passes them through the
granulator, and then back out to the output. (Fig. 24)

 This is the first type of granulation which the granulator object can
perform. (Fig. 25) Input data is read into the system, and then played back in
the most real time possible with modulated amplitude and pitch, the time
domain of the signal remains the same as the original. Stepping through this
function we see how the logic of the granular system operates. First, the
system determines the schema for the delta offset calculation is that of real
time operation (stretching = false). Next, the system determines whether or
not a schedulerBang has occurred. If no bang has occurred, the granulator
need not perform any action at this point. If the bang is true, the granulator
parses through the available grains it has at its disposal. It finds the first
available grain, and then initializes it with the user specified settings. First, the
window size of the grain is taken from the user interface, and passed into the
grain. Next, the position of the grain in the buffer is determined. If the grain’s
playback pitch is <= 1, the delta offset may remain zero, as the read action
occurs after the write action of the granular buffer, and grains can be
executed in fully real time. If the pitch of the grain is > 1, then this system
uses a method to keep the grain as close to the read head as possible.

Fig. 21
Granulator.h

class Granulator
{
public:
 Granulator();
 ~Granulator();

 float process(Grain* grains, GranularBuffer &buffer, bool stretching, bool
schedulerBang, float numGrains, float sampleRate, float grainSize, float pitch,
float stretchSpeed);

private:
 bool m_bState;
 float m_fStretchDelta;
 bool m_bStretchStarted;

Granulator m_GranulatorL;
Granulator m_GranulatorR;

GranularBuffer m_gBufferL;
GranularBuffer m_gBufferR;
const float m_fMaxBufferLength = 10.0;

GrainScheduler m_SchedulerL;
GrainScheduler m_SchedulerR;

const int m_nNumberGrains = 6;
Grain* m_GrainP_ArrayL;
Grain* m_GrainP_ArrayR;

void MNMLGranularAudioProcessor::prepareToPlay (double sampleRate, int
samplesPerBlock)
{
 m_GrainP_ArrayL = new Grain[m_nNumberGrains];

 m_GrainP_ArrayR = new Grain[m_nNumberGrains];

 m_gBufferL.setBufferLength(sampleRate, m_fMaxBufferLength);
 m_gBufferL.prepareToPlay();

 m_gBufferR.setBufferLength(sampleRate, m_fMaxBufferLength);
 m_gBufferR.prepareToPlay();

 m_SchedulerL.prepareToPlay();
 m_SchedulerR.prepareToPlay();
}

Fig. 22
PluginProcessor.h

Fig. 23
PluginProcessor.cpp - prepareToPlay() function

�14

Delta = (pitch-1.0)*(grainSize*sampleRate);

 This calculation ensures that the last sample of the windowed audio
data will land back onto the write head of the granular buffer, with minimal
time offset. This works by determining the amount in samples which the grain
would play past the write head, and setting it back in the buffer accordingly
to ensure that no audio discontinuities occur by reading past the write head.
(Fig. 26)

 After the grain’s delta offset is calculated, and the grain is initialized
with its position in the buffer, it’s set busy. When the grain is set busy it begins
applying its window function to its set position in the audio buffer. The other
potential mode for the granular engine is that of time stretching. (Fig. 27)

 In this method of granular processing, the delta offset of the grains
position in the buffer is controlled by a speed factor which is determined in
the user interface. A bool, stretchStarted, keeps track of the onset of
stretching mode. If stretching mode becomes true, stretchDelta is initialized
to 0, and the delta begins to grow and wrap around the buffer. This
exponential growth of the offset is what allows the separation of pitch and
time, allowing the pitch of the signal to stay intact while audibly the sound
can be slowed down. Multiple grains of the same pitch are played in a
density which allows sustained amplitude of the origin signal, but moves
through the buffer more slowly than real time.

 The final function of the granulator is to stitch back together the
audio output of all the grains into a single stream. This is done simply by
summing the output of all of the grains together. (Fig. 28) Only grains which
are currently active will contribute to the generation of this audio data, as any
grain which is inactive will return a zero and not affect the computation.

for (int i = 0; i < buffer.getNumSamples(); i++)
{
 if (channel == 0)
 {
 m_gBufferL.process(channelData[i]);
 m_SchedulerL.play();
 const bool bangL = m_SchedulerL.bang();
 const float output = m_GranulatorL.process(grainp_ArrayL,
 m_gBufferL,
 stretchButtonStateScaled,
 bangL,
 m_nNumberGrains,
 m_fSampleRate,
 grainSizeScaled,
 pitchScaled,
 stretchSpeedScaled);

 channelData[i] = (output * Tab1_dryWetScaled) + ((1 -
 Tab1_dryWetScaled) * channelData[i]);
 }
}

Fig. 24
PluginProcessor.cpp - processBlock() function

if (!stretching)
{
 if (schedulerBang)
 {
 for (int i = 0; i < numGrains; i++)
 {
 if(grains[i].isItBusy() == false)
 {
 grains[i].setWindowSize(sampleRate, grainSize);
 float delta = 0.0;
 if (pitch >= 1.0)
 {
 delta = (pitch-1.0)*(grainSize*sampleRate);
 }
 grains[i].setDelta(delta);
 grains[i].init(pitch, buffer);
 grains[i].setGrainBusy(true);
 break;
 }
 }
 }
}

Fig. 25
Granulator.cpp - process() function (no time-stretching)

�15

if (stretching)
{
 if (!stretchStarted){
 stretchDelta = 0;
 stretchStarted = true;
 }
 stretchDelta += stretchSpeed;
 if (schedulerBang == true){
 for (int i = 0; i < numGrains; i++){
 if(grains[i].isItBusy() == false){
 grains[i].setWindowSize(sampleRate, grainSize);
 grains[i].setDelta(stretchDelta);
 grains[i].init(pitch, buffer);
 grains[i].setGrainBusy(true);
 break;
 }
 }
 }
}

float output = 0;
for (int i = 0; i < numGrains; i++)
{
 output += grains[i].play(sampleRate, buffer);
}

Fig. 28
Granulator.cpp - process() function

Fig. 26
Effect of Delta Offset Calculation

Fig. 27
Granulator.cpp - process() function (time-stretching)

�16

Rhythmic Tempo Syncing
 One of the strengths of MNML Granular is its ability to sync to the
host tempo. On the UI of the plugin, there is a switch which activates either a
free time or a syncopated time mode. If syncopated timing is selected, the
functionality of the GrainSchedulers are adjusted in order to deliver tempo
synced triggering of the grains. This is handled in the process block before
the “bang” of the scheduler is passed into the granulator. (Fig. 29)

 The current position of the playhead inside of the DAW is pulled
into the plugin and passed into an updateBPM() function. (Fig. 30)

 Keeping track of timing inside of digital audio systems between
blocks can be a difficult challenge. In this system, the downBeatCounter is
never guaranteed to equal 0 at any point, even if the playhead rolls across
the downbeat. The easiest solution to syncing grains to the downbeat is to
check whether the current block of audio data’s downbeat counter is less
than the previous one, this means that the audio playhead has rolled over the
downbeat inside the DAW, and a grain should play during this block. (Fig. 31)

 The updateParameters() function grabs the current sync rate and
timing mode the user has selected in the UI. If free time is selected,
the inter onset rate of the granular system is set to the value of the density
knob in the UI. If sync time is selected, the system pulls the
“currentTempoSyncNumerator” and divides this by the currentBPM to find
the seconds per beat, it then multiplies this against the sampleRate in order
to determine the inter-onset time in samples.

 If the system is in synced time mode, it continuously syncs to the
down beat of the DAW, ensuring that grains stay synced to the host tempo.
The prepare to play function resets the index of the counter to 0, while the
forceBang() function guarantees a single grain will be triggered on this down
beat. The counter then continues operating as expected and then re locks to
the host BPM on the next down beat.

AudioPlayHead::CurrentPositionInfo posInfo;
updateBpm(posInfo);

Fig. 29
PluginProcessor.cpp - processBlock() function (before granulation)

void MNMLGranularAudioProcessor::updateBpm(CurrentPositionInfo posInfo)
{
 AudioPlayHead* playHead = getPlayHead();
 playHead->getCurrentPosition (posInfo);

 currentBPM = posInfo.bpm;
 ppqPosition = posInfo.ppqPosition;

 double timeSigNumerator = posInfo.timeSigNumerator;

 downBeatCounterZ = downBeatCounter;
 downBeatCounter = fmod(ppqPosition, timeSigNumerator);
}

Fig. 30
PluginProcessor.cpp - updateBPM() function

updateParams();

if (!freetimeSynctimeParam->getValue())
{
 m_SchedulerL.setInteronset(m_fSampleRate, Tab1_densityScaled);
 m_SchedulerR.setInteronset(m_fSampleRate, Tab1_densityScaled);
} else if (freetimeSynctimeParam->getValue()) {
 m_SchedulerL.setInteronset(m_fSampleRate, Tab2_currentTempoSyncNumerator/
 currentBPM);
 m_SchedulerR.setInteronset(m_fSampleRate, Tab2_currentTempoSyncNumerator/
 currentBPM);
 }
 if (freetimeSynctimeParam->getValue())
 {
 if (downBeatCounter < downBeatCounterZ)
 {
 m_SchedulerL.prepareToPlay();
 m_SchedulerL.forceBang();
 m_SchedulerR.prepareToPlay();
 m_SchedulerR.forceBang();
 }
 }

Fig. 31
PluginProcessor.cpp - processBlock() function (before granulation)

�17

User Interface
 The end goal of MNML Granular is to deliver users an enjoyable
experience while using the system, for this reason a custom UI was created
for the plugin, which is meant to be intuitive and easy on the eyes. (Fig. 32)

Conclusion of Granular Methods
 The methodology proposed in this section has outlined a robust
and flexible system of granular synthesis, which could be applied to both real
and non-real time systems. The goal of this project was to explore digital
signal processing in depth, as well as gain an understanding of multi-
threaded audio/UI applications. The source code of MNML Granular has
been adopted into research for the machine learning of synthesis
parameters, the methods of which will now be discussed.

Fig. 32
MNML Granular User Interface

�18

M e t h o d s - M a c h i n e Lea r n i n g
Overview

 SelfProgrammer is a standalone real time machine learning for audio
application. It uses the source code of MNML Granular in order to explore the
possibility of machine learning synthesis parameters. Currently, very complex
synthesis structures are capable of creating a seemingly unlimited amount of
sounds, however, hundreds of parameters must be manually programmed to
reach a target sound. SelfProgrammer delivers a highly controlled
environment to test the ability of machine learning for digital audio systems,
and success in this environment could prove hopeful for success in more
complex systems.

 The structure of SelfProgrammer is that of an optimization algorithm.
A target audio file is loaded into the system, as well as an input. The input is
passed through the MNML Granular system. (Fig. 33, 34)

Data Acquisit ion
 SelfProgrammer uses FFT analysis in order to gather information
about the input and target audio file. (Fig. 35) FFT (Fast Fourier Transform) is
an algorithm used to compute the of DFT (Discrete Fourier Transform) of an
audio signal. This calculation transforms a set of discrete sample points in
time and space, into a representation of the signal in the frequency domain.
This conversion delivers SelfProgrammer the amplitude of signal across the
frequency spectrum, which gives good insight into the qualities of a
waveform.

 After both an input and a target audio file are loaded into the
system, the system begins working when the user presses “start input.” First,
the buffer of the target audio file is passed into a ring buffer for performing
FFT. (Fig. 36)

 A f t e r b e i n g p a s s e d i n t o t h e r i n g b u f f e r u s i n g
pushNextSampleIntoFifoTarget, the buffer is also copied into a second buffer,
bufferToLearn, this will be used in between calls to getNextAudioBlock(), in
the data acquisition and learning section of the program. After the target
audio data has been passed to it’s own FFT buffer, the same is done for the

Fig. 33
SelfProgrammer Application Structure

Fig. 34
SelfProgrammer User Interface

�19

input audio source, however, the input audio source is run through the
MNML Granular algorithm before it’s sent to the FFT. The input is also passed
to the speaker output so the user can hear the effect of the granular. The ring
buffer keeps the FFT data blocks at the proper lengths, a power of two, which
allows for optimized FFT processing. (Fig. 37)

 The schema for the audio processing in this environment is the
same as that in MNML Granular, however in this environment there is no user
control over the synthesis parameters. (FIg. 38) Instead, the computer must
determine the ideal settings of the granular system in order to minimize error
between the input and target audio datas. This processing starts when
runFFT() is called at the end of this audio block, after the input audio data has
also been copied into a separate buffer.

targetTransportSource.getNextAudioBlock (bufferToFill);
for (int channel = 0; channel < numChannel; channel++)
{
 float* data = bufferToFill.buffer->getWritePointer(channel);
 for (int i = 0; i < numSamples; i++)
 {
 if (channel == 0)
 {
 pushNextSampleIntoFifoTarget (data[i]);
 }
 }
}
bufferToLearn->setSize(2, numSamples);
bufferToLearn = bufferToFill.buffer;

void pushNextSampleIntoFifo (float sample) noexcept
{
 if (fifoIndex == fftSize)
 {
 if (! nextFFTBlockReady)
 {
 zeromem (fftData, sizeof (fftData));
 memcpy (fftData, fifo, sizeof (fifo));
 nextFFTBlockReady = true;
 }

 fifoIndex = 0;
 }
 fifo[fifoIndex++] = sample;
}

Fig. 37
MainComponent.cpp - pushNextSampleIntoFifo() function

for (int channel = 0; channel < numChannel; channel++)
{
 float* data = bufferToFill.buffer->getWritePointer(channel);
 for (int i = 0; i < numSamples; i++)
 {
 if (channel == 0)
 {
 m_gBufferL.process(data[i]);
 m_SchedulerL.play();
 const bool bangL = m_SchedulerL.bang();

 data[i] = m_GranulatorL.process(grainp_ArrayL, m_gBufferL,
 0, bangL, m_nNumberGrains,
 m_fSampleRate, grainSize,
 grainPitch, 1);

 pushNextSampleIntoFifo (data[i]);
 }
 }
}

bufferToProcess->setSize(2, numSamples);
bufferToProcess = bufferToFill.buffer;
runFFT();

Fig. 38
MainComponent.cpp - pushNextSampleIntoFifo() function

Fig. 35
DFT Equation

Fig. 36
MainComponent.cpp - getNextAudioBlock() function (target signal)

�20

Error Calculation
 The heart of the learning algorithm is the error calculation. The error
is used to determine whether the learning is working, and drive the system
through it’s logistical checks. As stated before, in SelfProgrammer the FFT
data from two audio signals are compared to determine changes in
parameters. (Fig. 39) The squared error along all frequency bins are summed
and divided by the amount of bins to determine an average difference of the
audio signals. (Fig. 40)

 After the error is gathered for the system, the application makes it’s
next decision regarding learning. (Fig. 41) The bool learnedIt controls the
flow of the system. If the error is found to be above a certain threshold,
learnedIt is set false and the system is initialized. numLearningAttempts is set
to zero, and parameter optimization begins.

if (nextFFTBlockReady && nextFFTBlockReadyTarget)
{
 nextFFTBlockReady = false;
 forwardFFT.performFrequencyOnlyForwardTransform (fftData);
 drawNextLineOfSpectrogramInput();

 nextFFTBlockReadyTarget = false;
 forwardFFT2.performFrequencyOnlyForwardTransform (fftDataTarget);
 drawNextLineOfSpectrogramTarget();

 error = 0;
 for (int i = 0; i < fftSize/2; i++)
 {
 error += ((fftData[i] - fftDataTarget[i]) * (fftData[i] -
 fftDataTarget[i]));
 }
 error = error/(fftSize/2);
}

Fig. 39
MainComponent.cpp - runFFT()

if (error > 50)
{
 param = (rand() % 1000) / 500.0;
 learnedIt = false;
 numLearningAttempts = 0;
}

Fig. 40
Sum of Squared Error Equation

Fig. 41
MainComponent.cpp - runFFT() function

�21

Parameter Optimization
 Once it is established that the error in the system is great, and that
optimization must occur, the application enters an optimization loop,
recurring until the demands of the system are met. (Fig. 42)

 Entering the optimization loop, the function accelerateLearn is
called. This function reprocesses the copied audio blocks of the current
buffers with changes to the parameters. Every time the FFT of the newly
reprocessed audio block is run and error is recalculated, parameter
optimization occurs.

 From this point, the system makes a new decision on the best course
of action. If the difference between the last parameter and the current
parameter is less than 0.001, but the error is greater than 0.1, this suggests
that we have hit a local optimization, and the parameter should be reinitialize
to begin optimization from a different point.

 If the change in parameter is less than 0.001, and error is < 0.1, the
learning has been successful, the system exits and audio is passed to the
output buffer. Alternatively, if the learning has run over 100 attempts, the
system also exits and passes the buffer to the output. The cap of learning
attempts exists because of our real time audio system. If the too much
optimization is processed in between blocks audio dropouts occur due to
the demanding speed of audio playback. The best approach is to allow the
audio buffer to pass and re-attempt the learning with the next block.

 If the system is not satisfied, another round of optimization occurs,
using gradient descent.

while(!learnedIt)
{
 accelerateLearn();

 if (nextFFTBlockReadyTarget && nextFFTBlockReadyInput)
 {
 nextFFTBlockReadyTarget = false;
 forwardFFT2.performFrequencyOnlyForwardTransform (fftDataTarget);
 drawNextLineOfSpectrogramTarget();

 nextFFTBlockReadyInput = false;
 forwardFFT.performFrequencyOnlyForwardTransform (fftDataInput);
 drawNextLineOfSpectrogramInput();

 error = 0;
 for (int i = 0; i < fftSize/2; i++)
 {
 error += ((fftDataTarget[i] - fftDataInput[i])*(fftDataTarget[i] -
 fftDataInput[i]));
 }
 error = error/(fftSize/2);

 if(deltaParamChange < 0.001 && error > 1 && numLearningAttempts < 100)
 {
 param = (rand() % 1000) / 500.0;
 numLearningAttempts++;
 }
 else if ((deltaParamChange < 0.001 && error < 1)
 || numLearningAttempts > 100)
 {
 learnedIt = true;
 }
 else
 {
 numLearningAttempts++;

 float change = ((error - errorZ) / deltaPitchChange) * 0.0001;
 param -= change;

 deltaParamChange = (param - parameterZ);
 }
 errorZ = error;
 parameterZ = param;
 }
}

Fig. 42
MainComponent.cpp - runFFT()

�22

Gradient Descent
 Gradient descent is an optimization algorithm used in machine
learning applications in order to quickly navigate through functions in error
space. (Fig. 43, 44) It computes changes in error with respect to changes in
the parameter and updates the parameter in order minimize this error.
Iteratively, theta or the parameter, is updated to be equal itself minus the
difference of the error between the current and previous buffer, divided by
the difference of the current and previous parameter, multiplied by a scalar
for controlling speed of descent.

Conclusion of Machine Learning Methods
 The methodology proposed in this section has outlined a system for
the machine learning of synthesis parameters. The system has been testing in
both single and multiple parameter settings, which will be discussed in the
results.

Fig. 43
MainComponent.cpp - runFFT()

Fig. 44
Gradient Descent in Error Space

�23

Re s u l t s - G ra n u l a r
 In the use case of MNML Granular, musicians are embracing the
addition of rhythmic syncopation and chopping to granular processing.

 JP Yépez, a creative technologist and educator with an MFA in Music
Technology stated, “It’s clear that there is a disconnection between
developers of musical applications and the needs of electronic musicians. The
addition of tempo syncopation inside of MNML Granular offers composers a
highly musical experience. Where many audio applications focus solely on
signal processing, MNML Granular offers a simple addition to granular
synthesis which can make a large impact on the workflow of musicians.”

 MNML Granular demonstrates multiple useful audio processing
techniques. The original input signal is seen to have a constant amplitude.
(Fig. 45) Through MNML Granular we see the addition of various types of
processing. First, eighth note syncopation shows a very strong correlation to
the rhythmic time markers in the DAW. (Fig. 46) Next, we see the input signal
transposed an octave up in free time mode. We’re able to see arhythmic
control of the grains, as well as retain a constant amplitude which is the
transposed version of the input signal with the same time domain. (Fig. 47)
The last figure shows the stretch feature of the plugin, which once instantiate
is able to slow down as well as grab and repeatedly play certain parts of the
buffer. (Fig. 48)

Fig. 45
Original Input Signal

Fig. 46
Eighth Note Syncopation

Fig. 47
Transposed One Octave Up / Free Time Syncopation

Fig. 48
Syncopated Signal Rhythmically Chopped and Frozen/Stretched

�24

Re s u l t s - M a c h i n e Lea r n i n g
Single Parameter

 In the first test of the machine learning system, a single parameter is
optimized. First, a drum loop is preprocessed through the granular system, it
shares all of the same parameters with what will be the input signal, except
one, pitch. (Fig. 49)

 Visualizing the spectrogram of the unprocessed input and target we
see a similar signal, however, in the target there is a clear shift of the
strongest amplitudes due to the pitch shifting incurred from the granular
processing. (Fig. 50)

 After processing the input through the machine learning system, we
see the same shift in the input signal. (Fig. 51) Upon examination of the
parameter learned within the system, in the spectrogram displayed, the pitch
parameter is found to be 2.01527.

 Upon ten runs through the granular system, (Fig. 52) the pitch
parameter is consistently able to match that of the target. Aside from a 20%
possiblity for the machine learning system to confuse octaves of the signal,
the success of the single parameter suggests that the machine learning
system is performing as expected and can be tested upon multiple
parameters.

Default settings of SelfProgrammer: Settings needed to match target:

 Grain Size: 0.120281 Grain Size: 0.120281
 Density: 0.067375 Density: 0.067375
 Pitch: 1.000000 Pitch: 2.000000

Fig. 49
Granular Settings Unoptimized Input and Target (Single Parameter)

Time Time

TimeTime

1 2 3 4 5 6 7 8 9 10

2.00069 1.97000 1.06345 1.99800 1.90975 1.81067 1.10454 2.05039 1.94350 2.01324Result

AttemptAm
pl

it
ud

es
 I

np
ut

Am
pl

it
ud

es
 I

np
ut

Am
pl

it
ud

es
 T

ar
ge

t
Fig. 50

Unprocessed Input and Target Spectrograms
Am

pl
it

ud
es

 T
ar

ge
t

Fig. 51
Processed Input and Target Spectrograms

Fig. 52
Table of Machine Learning Results (Single Parameter)

�25

Multiple Parameters
 After success in the environment of the single parameter, the
structure of the application is refactored in order to handle the ability to
manage and optimize multiple synthesis parameters. In the runFFT() function,
the gradient descent calculation is applied to a randomly selected
parameter.

 For testing the system, again, a drum loop is preprocessed through
the granular system, and it’s settings saved for comparison against the results
of the learning algorithm. (Fig. 53) However, this time multiple parameters
are changed from that of the default settings within SelfProgrammer.

 In the FFT plots of the unprocessed input and target signals we
again see similar frequency responses, which have been skewed due to the
granular processing. (Fig. 54)

 In the FFT plots of the processed input signal, we see highly
sporadic movements, with rapid changes in the amplitude of the bins, as well
as complete dead zones in the time domain. In the target signal we see the
same bins of the buffer being repeatedly plotted in equally divided
segments. (Fig. 55) This indicates the buffers are being continually
reprocessed to the cap of the available number of learning requests, and
that the learning is never satisfying the system.

 The fact that the system is continually hitting the cap of the learning
algorithm suggests that the there has been a struggle to scale to multiple
parameters. This is likely due to an incorrect usage of the gradient descent
function, as well as a machine learning system too naive for the necessary
application. The dead buffers and unorthodox FFT plot of the processed
input also suggest problems or invalid values in the granular processing,
which potentially corrupt the error calculation.

Default settings of SelfProgrammer: Settings needed to match target:

 Grain Size: 0.120281 Grain Size: 1.7334800
 Density: 0.067375 Density: 0.0729607
 Pitch: 1.000000 Pitch: 1.7334800

Fig. 53
Granular Settings Unoptimized Input and Target (Multiple Parameters)

Am
pl

it
ud

es
 I

np
ut

TimeTime

Am
pl

it
ud

es
 T

ar
ge

t
Fig. 54

Unprocessed Input and Target Spectrograms

Time

Am
pl

it
ud

es
 I

np
ut

Time

Am
pl

it
ud

es
 T

ar
ge

t

Fig. 55
Processed Input and Target Spectrograms

�26

Co n c l u s i o n s
 The aim of this paper was to investigate the machine learning of
synthesis parameters through the automated programming of a custom
rhythmically focused granular engine. The research involved an exploration
into circular buffers, audio grains, window functions, sample rate schedulers,
granular architecture, and rhythmic tempo syncing. It also explored machine
learning architecture, audio data acquisition, error calculation, gradient
descent, and parameter optimization.

 The positive response of musicians to the rhythmic syncing of
granular processing shows that there is room for innovation in the creation of
new granular synthesis engines. The successful machine learning of a
parameter within this system shows promise in the future of automated
synthesis programming. Although the system had trouble with multiple
parameters, it has revealed the next steps on the path to automated synthesis
programming.

 Bruce Dawson, an audio software developer with an MFA in music
technology and BS in computer science said, “as interaction between
machine learning and musical functionality draws closer together, the
possibility of autonomous synthesis infrastructures becomes a real possibility
-- we live in the age of consistent digital and musical advancement and I
forsee the continuous development of groundbreaking algorithmic processes
becoming a staple of music for the forecoming centuries. Studies today such
as Jacob’s contribute to the musical world of tomorrow, and through these
contributions to music and computing fields, the realization of the algorithmic
future of music computing is astonishing and all too real.”

 Future work will involve the creation of a more robust audio
synthesis environment, capable of creating audio from scratch, as well as
research into a more advanced machine learning system. Possible
improvements to thesystem could include more features for error calculation,
a neural net to control changes in parameters, as well as optimization across
entire audio files as opposed to single audio blocks.

�27

Re f e re n c e s

10. Cartwright, Mark, and Bryan Pardo. "SynthAssist: Querying an
Audio Synthesizer by Vocal Imitation." NIME. (2014)

11. Tubb, Robert, and Simon Dixon. "A zoomable mapping of a
musical parameter space using hilbert curves." Computer
music journal. (2014)

12. Yuksel, Kamer Ali, Batuhan Bozkurt, and Hamed Ketabdar. "A
software platform for genetic algorithms based parameter
estimation on digital sound synthesizers." Proceedings of the
2011 ACM Symposium on Applied Computing. (2011)

13. Donahue, Chris. "Applications of genetic programming to
digital audio synthesis." The University of Texas at Austin,
Department of Computer Science (2013)

14. Truax, Barry. "Composing with real-time granular sound."
Perspectives of New Music (1990)

15. Truax, Barry. "Composing with time-shifted environmental
sound." Leonardo Music Journal (1992)

16. Tatar, Kıvanç, Matthieu Macret, and Philippe Pasquier.
"Automatic Synthesizer Preset Generation with PresetGen."
Journal of New Music Research (2016)

17. Roads, Curtis. "Granular synthesis of sound." (1985)

18. De Poli, Giovanni, and Aldo Piccialli. "Pitch-synchronous
granular synthesis." Representations of musical signals. MIT
Press. (1991)

1. Mariam Webster. "Atomism Definition.” Mariam-Webster.com
(2016)

2. Roads, Curtis. "The Evolution of Granular Synthesis: An
Overview of Current Research." International Symposium on
The Creative and Scientific Legacies of Iannis Xenakis (2006)

3. Lebrecht, Norman. "The Maestro Myth: Great Conductors in
Pursuit of Power. Secaucus.” NJ: Carol Pub. Group (1999)

4. Alpaydin, Ethem. "Introduction to Machine Learning."
Cambridge, MA: MIT, (2010)

5. Bencina, Ross. "Implementing Real-Time Granular
Synthesis.”(2001)

6. Iannis Xenakis, "Formalized Music: Thought and Mathematics
in Composition." Bloomington and London: Indiana
University Press (1971)

7. Yee-King, Matthew. "SYNTHBOT: AN UNSUPERVISED
SOFTWARE SYNTHESIZER PROGRAMMER." Informatics
University of Sussex (2008)

8. Tubb, Robert, and Simon Dixon. "The Divergent Interface:
Supporting Creative Exploration of Parameter Spaces." NIME.
(2014)

9. Tatar, Kıvanç, Matthieu Macret, and Philippe Pasquier.
"Automatic Synthesizer Preset Generation with PresetGen."
Journal of New Music Research (2016)

